Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370823

RESUMO

Background: Bloom Syndrome (BSyn) is an autosomal recessive disorder caused by biallelic germline variants in BLM, which functions to maintain genomic stability. BSyn patients have poor growth, immune defects, insulin resistance, and a significantly increased risk of malignancies, most commonly hematologic. The malignancy risk in carriers of pathogenic variants in BLM (BLM variant carriers) remains understudied. Clonal hematopoiesis of indeterminate potential (CHIP) is defined by presence of somatic mutations in leukemia-related genes in blood of individuals without leukemia and is associated with increased risk of leukemia. We hypothesize that somatic mutations driving clonal expansion may be an underlying mechanism leading to increased cancer risk in BSyn patients and BLM variant carriers. Methods: To determine whether de novo or somatic variation is increased in BSyn patients or carriers, we performed and analyzed exome sequencing on BSyn and control trios. Results: We discovered that both BSyn patients and carriers had increased numbers of low-frequency, putative somatic variants in CHIP genes compared to controls. Furthermore, BLM variant carriers had increased numbers of somatic variants in DNA methylation genes compared to controls. There was no statistical difference in the numbers of de novo variants in BSyn probands compared to control probands. Conclusion: Our findings of increased CHIP in BSyn probands and carriers suggest that one or two germline pathogenic variants in BLM could be sufficient to increase the risk of clonal hematopoiesis. These findings warrant further studies in larger cohorts to determine the significance of CHIP as a potential biomarker of aging, cancer, cardiovascular disease, morbidity and mortality.

2.
Clin Genet ; 83(1): 35-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22435390

RESUMO

Disorders of sex development (DSD) are rare disorders in which there is discordance between chromosomal, gonadal, and phenotypic sex. Only a minority of patients clinically diagnosed with DSD obtains a molecular diagnosis, leaving a large gap in our understanding of the prevalence, management, and outcomes in affected patients. We created a novel DSD-genetic diagnostic tool, in which sex development genes are captured using RNA probes and undergo massively parallel sequencing. In the pilot group of 14 patients, we determined sex chromosome dosage, copy number variation, and gene mutations. In the patients with a known genetic diagnosis (obtained either on a clinical or research basis), this test identified the molecular cause in 100% (7/7) of patients. In patients in whom no molecular diagnosis had been made, this tool identified a genetic diagnosis in two of seven patients. Targeted sequencing of genes representing a specific spectrum of disorders can result in a higher rate of genetic diagnoses than current diagnostic approaches. Our DSD diagnostic tool provides for first time, in a single blood test, a comprehensive genetic diagnosis in patients presenting with a wide range of urogenital anomalies.


Assuntos
Variações do Número de Cópias de DNA/genética , Transtornos do Desenvolvimento Sexual , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Patologia Molecular , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/fisiopatologia , Testes Hematológicos , Humanos , Mutação , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...