Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(4): 1593-1608, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36929744

RESUMO

Hard-to-heal wounds (i.e., severe and/or chronic) are typically associated with particular pathologies or afflictions such as diabetes, immunodeficiencies, compression traumas in bedridden people, skin grafts, or third-degree burns. In this situation, it is critical to constantly monitor the healing stages and the overall wound conditions to allow for better-targeted therapies and faster patient recovery. At the moment, this operation is performed by removing the bandages and visually inspecting the wound, putting the patient at risk of infection and disturbing the healing stages. Recently, new devices have been developed to address these issues by monitoring important biomarkers related to the wound health status, such as pH, moisture, etc. In this contribution, we present a novel textile chemical sensor exploiting an organic electrochemical transistor (OECT) configuration based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for uric acid (UA)-selective monitoring in wound exudate. The combination of special medical-grade textile materials provides a passive sampling system that enables the real-time and non-invasive analysis of wound fluid: UA was detected as a benchmark analyte to monitor the health status of wounds since it represents a relevant biomarker associated with infections or necrotization processes in human tissues. The sensors proved to reliably and reversibly detect UA concentration in synthetic wound exudate in the biologically relevant range of 220-750 µM, operating in flow conditions for better mimicking the real wound bed. This forerunner device paves the way for smart bandages integrated with real-time monitoring OECT-based sensors for wound-healing evaluation.


Assuntos
Bandagens , Ácido Úrico , Humanos , Têxteis , Compostos Orgânicos , Exsudatos e Transudatos
2.
ACS Sens ; 6(6): 2366-2377, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34076430

RESUMO

The rapid evolution of wearable technologies is giving rise to a strong push for textile chemical sensors design targeting the real-time collection of vital parameters for improved healthcare. Among the most promising applications, monitoring of nonhealing wounds is a scarcely explored medical field that still lacks quantitative tools for the management of the healing process. In this work, a smart bandage is developed for the real-time monitoring of wound pH, which has been reported to correlate with the healing stages, thus potentially giving direct access to the wound status without disturbing the wound bed. The fully textile device is realized by integrating a sensing layer, including the two-terminal pH sensor made of a semiconducting polymer and iridium oxide particles, and an absorbent layer ensuring the delivery of a continuous wound exudate flow across the sensor area. The two-terminal sensor exhibits a reversible response with a sensitivity of (59 ± 4) µA pH-1 in the medically relevant pH range for wound monitoring (pH 6-9), and its performance is not substantially affected either by the presence of the most common chemical interferents or by temperature gradients from 22 to 40 °C. Thanks to the robust sensing mechanism based on potentiometric transduction and the simple device geometry, the fully assembled smart bandage was successfully validated in flow analysis using synthetic wound exudate.


Assuntos
Bandagens , Dispositivos Eletrônicos Vestíveis , Concentração de Íons de Hidrogênio , Polímeros , Cicatrização
3.
Sensors (Basel) ; 20(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570942

RESUMO

Biosensors based on Organic Electrochemical Transistors (OECTs) are developed for the selective detection of glucose and lactate. The transistor architecture provides signal amplification (gain) with respect to the simple amperometric response. The biosensors are based on a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel and the gate electrode is functionalised with glucose oxidase (GOx) or lactate oxidase (LOx) enzymes, which are immobilised within a Ni/Al Layered Double Hydroxide (LDH) through a one-step electrodeposition procedure. The here-designed OECT architecture allows minimising the required amount of enzyme during electrodeposition. The output signal of the biosensor is the drain current (Id), which decreases as the analyte concentration increases. In the optimised conditions, the biosensor responds to glucose in the range of 0.1-8.0 mM with a limit of detection (LOD) of 0.02 mM. Two regimes of proportionality are observed. For concentrations lower than 1.0 mM, a linear response is obtained with a mean gain of 360, whereas for concentrations higher than 1.0 mM, Id is proportional to the logarithm of glucose concentration, with a gain of 220. For lactate detection, the biosensor response is linear in the whole concentration range (0.05-8.0 mM). A LOD of 0.04 mM is reached, with a net gain equal to 400.


Assuntos
Técnicas Biossensoriais , Glucose , Ácido Láctico , Técnicas Eletroquímicas , Glucose/análise , Glucose Oxidase , Hidróxidos , Ácido Láctico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...