Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 10(1): 47, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098463

RESUMO

BACKGROUND: Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage. RESULTS: The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses. CONCLUSIONS: The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.

2.
Plant Physiol Biochem ; 58: 280-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22868211

RESUMO

Salinity is a major factor that limits rice production worldwide. Rice is considered generally to be sensitive to salt stress during the reproductive stage. To determine the molecular mechanisms of salt tolerance at the reproductive stage, anther proteomic patterns for two contrasting rice genotypes IR64 (salt sensitive) and Cheriviruppu (salt tolerant) under salt stress were compared. Plants were grown in a greenhouse and salt stress (100 mM NaCl) was imposed at the booting stage. Anther samples were collected from control and salt-treated plants at the anthesis stage. The Na(+)/K(+) ratio in IR64 anthers under salt stress was >1.7 times greater than that under control conditions, whereas no significant change was observed in Cheriviruppu. We also observed an 83% reduction in IR64 pollen viability, whereas this reduction was only 23% in Cheriviruppu. Of 454 protein spots detected reproducibly on two-dimensional electrophoresis gels, 38 showed significant changes in at least one genotype in response to stress. Using Mass spectrometry (MALDI TOF/TOF) analysis, we identified 18 protein spots that were involved in several processes that might increase plant adaptation to salt stress, such as carbohydrate/energy metabolism, anther wall remodelling and metabolism, and protein synthesis and assembly. Three isoforms of fructokinase-2 were upregulated only in Cheriviruppu under salt stress. This upregulation might result in increased starch content in pollen, which would support pollen growth and development under salt stress. The results also suggested that anther and pollen wall remodelling/metabolism proteins contribute to the tolerance of rice to salt stress.


Assuntos
Flores/metabolismo , Genótipo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Flores/efeitos dos fármacos , Frutoquinases/genética , Frutoquinases/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Pólen/efeitos dos fármacos , Proteômica , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...