Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 773: 144757, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940701

RESUMO

The Clinch River watershed of the upper Tennessee River Basin of Virginia and Tennessee, USA supports one of North America's greatest concentrations of freshwater biodiversity, including 46 extant species of native freshwater mussels (Order Unionida), 20 of which are protected as federally endangered. Despite the global biological significance of the Clinch River, mussel populations are declining in some reaches, both in species richness and abundance. The aim of this study was to evaluate the exposure of adult resident mussels to a suite of inorganic and organic contaminant stressors in distinct sections of the Clinch River that encompassed a range of mussel abundance and health. To provide insight into the potential role of pollutants in the decline of mussels, including within a previously documented "zone of mussel decline", the mainstem Clinch River (8 sites) and its tributaries (4 sites) were examined over two consecutive years. We quantified and related metals and organic contaminant concentrations in mussels to their associated habitat compartments (bed sediment, suspended particulate sediment, pore water, and surface water). We found that concentrations of organic contaminants in resident mussels, particularly the suite of 42 polycyclic aromatic hydrocarbons (PAHs) analyzed, were related to PAH concentrations in all four habitat (media) compartments. Further, PAH concentrations in mussel tissue (range 37.8-978.1 ng/g dry weight in 2012 and 194.3-1073.7 ng/g dry weight in 2013) were negatively related to the spatial pattern in mussel densities (rs = -0.64, p ≤ 0.05 in 2012 and rs = -0.83, p ≤ 0.05 in 2013) within the river, and were highest in the "zone of mussel decline". In contrast, the suite of 22 metals analyzed in resident mussels were largely unrelated to the spatial pattern of variation of metals in the four habitat compartments except for Manganese (Mn; range 3630.5-23,749.2 µg/g dry weight in 2012 and 1540.4-12,605.8 µg/g dry weight in 2013) in surface water (rs = 0.58, p < 0.1) and pore water (rs = 0.76, p ≤ 0.05). This study revealed that PAHs and Mn are important pollutant stressors to mussels in the Clinch River and that they are largely being delivered through the Guest River tributary watershed. Accordingly, future conservation and management efforts would benefit by identifying, and ideally mitigating, the sources of PAHs, Mn, and other current or legacy mining-associated pollutants to the mainstem river and its tributaries.


Assuntos
Bivalves , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Biodiversidade , Monitoramento Ambiental , Água Doce , Tennessee , Virginia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Bull Environ Contam Toxicol ; 105(4): 588-594, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856147

RESUMO

ProcellaCOR® (active ingredient [ai], florpyrauxifen-benzyl) is an aquatic herbicide registered for use in 2018 for managing invasive and nuisance macrophyte species. Registration studies evaluating its acute toxicity revealed a favorable environmental profile; however, prior to this study, no information existed on the toxicity of florpyrauxifen-benzyl to native freshwater mussels (Family Unionidae), one of the most sensitive and imperiled faunal groups globally. We followed standard acute (96 h) toxicity test guidelines and exposed juvenile Fatmucket (Lampsilis siliquoidea) and Eastern Lampmussel (Lampsilis radiata) to the following formulations or compounds: ProcellaCOR SC and EC formulations, technical grade active ingredient (TGAI, florpyrauxifen-benzyl), and an analytical-grade sample of the weaker florpyrauxifen acid (FA). In all tests, the estimated median lethal concentrations to produce 50% mortality (LC50) were greater than the highest concentration tested of each formulation or compound. The no observable adverse effect concentrations (NOAEC, based on analytical recoveries measured at the highest concentration tested where no toxicity was observed) were TGAI = 26 µg/L, FA = 100,000 µg/L, ProcellaCOR® SC = 193 µg ai/L ProcellaCOR® EC = 585 µg ai/L and the NOAEC values for the registered commercial formulation products (ProcellaCOR® SC and ProcellaCOR® EC) were orders of magnitude greater (3.9× and 11.7×, respectively) than the maximum application rate (50 µg/L). Our results show that the herbicide formulations and compounds tested were not acutely toxic to juveniles of these two species of freshwater mussels, indicating minimal risk of short-term exposure from florpyrauxifen-benzyl applications in the environment for aquatic weed control. However, potential chronic or sublethal effects remain uncharacterized and warrant additional investigation.


Assuntos
Compostos de Benzil/toxicidade , Bivalves/fisiologia , Herbicidas/toxicidade , Reguladores de Crescimento de Plantas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Água Doce , Ácidos Indolacéticos , Alimentos Marinhos , Unionidae
3.
Environ Toxicol Chem ; 36(2): 395-407, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27349213

RESUMO

The Clinch River in Virginia and Tennessee, USA, is well known for its diverse native freshwater mussel assemblages; however, notable declines in mussel populations in recent decades have prompted much concern and subsequent research. The authors examined the toxicity of recently deposited sediments on juveniles of the freshwater mussel Epioblasma brevidens by collecting time-integrated sediment samples from the water column with sediment traps from 11 sites in the Clinch River basin, including 6 sites within an 88-km reach deemed a "mussel zone of decline." Mussels were exposed to the riverine sediments and to 3 control sediments for 28 d; survival, shell length, and biomass were then assessed. Sediment treatment (i.e., river location) had a significant effect on mussel survival (p < 0.01) and biomass (p = 0.02) but did not affect length (p = 0.37), and sediments from 2 of the tributaries were the most toxic. Inorganic and organic analyses of sediments indicated the presence of metals and polycyclic aromatic hydrocarbons at all sites. Manganese was negatively correlated with mussel survival and biomass, as was ammonia with survival and total organic carbon with biomass. Current land uses in the watershed indicate that fossil fuel mining and agriculture may be associated with elevated manganese and ammonia, respectively. The authors found that sediments collected with sediment traps over relatively short deployment durations can help elucidate recent contaminant influx and its potential for inducing toxicity in benthic organisms. Environ Toxicol Chem 2017;36:395-407. © 2016 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Rios/química , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Agricultura , Amônia/análise , Amônia/toxicidade , Animais , Sedimentos Geológicos/análise , Metais Pesados/análise , Metais Pesados/toxicidade , Mineração , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Tennessee , Virginia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...