Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(33): e2303154, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37870200

RESUMO

Catalytic Janus colloids, with one hemi-sphere covered by a hydrogen peroxide reduction catalyst such as platinum, represent one of the most experimentally explored examples of self-motile active colloid systems. This paper comparatively investigates the motile behavior of symmetrical catalytic colloids produced by a solution-based metal salt reduction process. Despite the significant differences in the distribution of catalytic activity, this study finds that the motion produced by symmetrical colloids is equivalent to that previously reported for Janus colloids. It also shows that introducing a Janus structure to the symmetrical colloids via masking does not significantly modify their motion. These findings could indicate that very subtle variations in surface reactivity can be sufficient to produce Janus-like active Brownian particle-type motion, or that a symmetry-breaking phenomena is present. The study will consequently motivate fresh theoretical attention and also demonstrate a straightforward route to access large quantities of motile active colloids, which are expected to show subtly different phenomenology compared to those with Janus structures.

2.
Langmuir ; 39(14): 4863-4871, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36973945

RESUMO

As life evolved, the path from simple single cell organisms to multicellular enabled increasingly complex functionalities. The spatial separation of reactions at the micron scale achieved by cellular structures allowed diverse and scalable implementation in biomolecular systems. Mimicking such spatially separated domains in a scalable approach could open a route to creating synthetic cell-like structured systems. Here, we report a facile and scalable method to create multicellular-like, multi-compartment (MC) structures. Aqueous droplet-based compartments ranging from 50 to 400 µm were stabilized and connected together by hydrophobic layers composed of phospholipids and an emulsifier. Planar centimeter-scale MC structures were formed by droplet deposition on a water interface. Further, the resulting macroscopic shapes were shown to be achieved by spatially controlled deposition. To demonstrate configurability and potential versatility, MC assemblies of both homogeneous and mixed compartment types were shown. Notably, magnetically heterogeneous systems were achieved by the inclusion of magnetic nanoparticles in defined sections. Such structures demonstrated actuated motion with structurally imparted directionality. These novel and functionalized structures exemplify a route toward future applications including compartmentally assembled "multicellular" molecular robots.


Assuntos
Células Artificiais , Nanopartículas , Fosfolipídeos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122274, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580751

RESUMO

Honey is a complex food matrix that contains diverse polyphenolic compounds. Some phenolics exhibit fluorescence signatures which can be used to evaluate honey quality, and authenticity and to determine botanical origin. Manuka honey contains two unique fluorescence markers: Leptosperin (MM1) and LepteridineTM (MM2) that are derived from Leptospermum scoparium nectar. Fluorescence measurement of supersaturated solutions such as undiluted honeys can be challenged by complex inner filter effects. The current study shows the ability of internal reflectance cell fluorescence measurement and multi-way analysis to detect fluorophores in undiluted honeys. This study scanned honeys from different geographic districts generating excitation emission matrices (250-400/300-600 nm), and by near infrared (NIR) hyperspectral camera (547-1701 nm). PARAFAC and tri-PLS could track two fluorescence markers: MM1 (R2 = 0.82 & RMSEP = 138.65) and MM2 (R2 = 0.82 & RMSEP = 2.75) from undiluted honey fluorescence data with > 80 % accuracy. Classification of mono-floral, multi-floral and non-manuka honeys achieved 90 % overall accuracy. Fusion of fluorescence data at ƛex 270 & 330 nm and NIR hyperspectral data combined with multi-block PLS analysis enhances predictability of fluorescence markers further. The study revealed the potential of internal reflectance cell fluorescence measurement combined with chemometrics and data fusion for rapid evaluation of honey quality and botanical origin.


Assuntos
Mel , Mel/análise , Leptospermum , Espectrometria de Fluorescência , Corantes Fluorescentes , Fenóis/análise
4.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458281

RESUMO

Despite the extensive research, the moisture-based degradation of the 3D-printed polypropylene and polylactic acid blend is not yet reported. This research is a part of study reported on partial biodegradable blends proposed for large-scale additive manufacturing applications. However, the previous work does not provide information about the stability of the proposed blend system against moisture-based degradation. Therefore, this research presents a combination of excessive physical interlocking and minimum chemical grafting in a partial biodegradable blend to achieve stability against in-process thermal and moisture-based degradation. In this regard, a blend of polylactic acid and polypropylene compatibilized with polyethylene graft maleic anhydride is presented for fused filament fabrication. The research implements, for the first time, an ANOVA for combined thermal and moisture-based degradation. The results are explained using thermochemical and microscopic techniques. Scanning electron microscopy is used for analyzing the printed blend. Fourier transform infrared spectroscopy has allowed studying the intermolecular interactions due to the partial blending and degradation mechanism. Differential scanning calorimetry analyzes the blending (physical interlocking or chemical grafting) and thermochemical effects of the degradation mechanism. The thermogravimetric analysis further validates the physical interlocking and chemical grafting. The novel concept of partial blending with excessive interlocking reports high mechanical stability against moisture-based degradation.

5.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458292

RESUMO

This research presents a partial biodegradable polymeric blend aimed for large-scale fused deposition modeling (FDM). The literature reports partial biodegradable blends with high contents of fossil fuel-based polymers (>20%) that make them unfriendly to the ecosystem. Furthermore, the reported polymer systems neither present good mechanical strength nor have been investigated in vulnerable environments that results in biodegradation. This research, as a continuity of previous work, presents the stability against biodegradability of a partial biodegradable blend prepared with polylactic acid (PLA) and polypropylene (PP). The blend is designed with intended excess physical interlocking and sufficient chemical grafting, which has only been investigated for thermal and hydrolytic degradation before by the same authors. The research presents, for the first time, ANOVA analysis for the statistical evaluation of endurance against biodegradability. The statistical results are complemented with thermochemical and visual analysis. Fourier transform infrared spectroscopy (FTIR) determines the signs of intermolecular interactions that are further confirmed by differential scanning calorimetry (DSC). The thermochemical interactions observed in FTIR and DSC are validated with thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) is also used as a visual technique to affirm the physical interlocking. It is concluded that the blend exhibits high stability against soil biodegradation in terms of high mechanical strength and high mass retention percentage.

6.
Foods ; 9(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977443

RESUMO

In this study, novel spore pouches were developed using mashed potato as a food model inoculated with either Geobacillus stearothermophilus or Clostridium sporogenes spores. These spore pouches were used to evaluate the sterilization efficiency of Coaxially induced microwave pasteurization and sterilization (CiMPAS) as a case study. CiMPAS technology combines microwave energy (915 MHz) along with hot water immersion to sterilize food in polymeric packages. The spore pouches were placed at pre-determined specific locations, especially cold spots in each food tray before being processed using two regimes (R-121 and R-65), which consisted of 121 °C and 65 °C at 12 and 22 kW, respectively, followed by recovery and enumeration of the surviving spores. To identify cold spots or the location for inoculation, mashed potato was spiked with Maillard precursors and processed through CiMPAS, followed by measurement of lightness values (*L-values). Inactivation equivalent to of 1-2 Log CFU/g and >6 Log CFU/g for Geobacillus stearothermophilus and Clostridium sporogenes spores, respectively was obtained on the cold spots using R-121, which comprised of a total processing time of 64.2 min. Whereas, inactivation of <1 and 2-3 Log CFU/g for G. stearothermophilus and C. sporogenes spores, respectively on the cold spots was obtained using R-65 (total processing time of 68.3 min), whereas inactivation of 1-3 Log CFU/g of C. sporogenes spores was obtained on the sides of the tray. The results were reproducible across three processing replicates for each regime and inactivation at the specific locations were clearly distinguishable. The study indicated a strong potential to use spore pouches as a tool for validation studies of microwave-induced sterilization.

7.
J Hazard Mater ; 398: 122625, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32497862

RESUMO

From a viewpoint of reducing the burden on both human health and the environment, alternative surface modification techniques for preparing highly water-repellent surfaces without the use of environmentally damaging perfluorocarbons are highly desirable. Among them, the development of hydrophilic surfaces showing superior water sliding/removal properties has been scarcely reported. In this study, we have successfully demonstrated the fabrication of smooth, transparent, and hydrophilic pegylated organosilanes (PEGn-Si, CH3O-(C2H4O)n-C3H6-Si(OCH3)3 where n = 3, 6-9, 9-12)-derived hybrid films showing excellent water sliding/removal properties using a simple sol-gel reaction of PEGn-Si and tetraethoxysilane (TEOS, Si(OC2H5)4). The final static/dynamic surface wetting properties of the samples were found to be significantly influenced by both the PEG chain length and their mixing ratios. The use of PEGn-Si with the longest PEG chain (n = 9-12) was found to be effective for improving water sliding/removal properties. Small volume water droplets (5 µL) on the PEG9-12-Si/TEOS hybrid film (static water contact angle (CA) of ∼40°) at a 90°-inclined surface could slide at an average speed of 3.4 mm/sec without pinning and tailing, which was about twice as fast as that on the PEG6-9-Si/TEOS hybrid film surface (1.5 mm/sec, static water CA of ∼40°), in spite of having similar static hydrophilic nature.

8.
Langmuir ; 36(27): 7835-7843, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32579368

RESUMO

Chemically and spatially micropatterned surfaces have been successfully prepared for a number of diverse applications, including water/fog harvesting, screen printing, microfluidics, and cell/protein assays. While there have been quite some reports on micropatterned surfaces, less is known about the factors that influence dynamic surface wettability. To that end, smooth checkerboard-like micropatterned hydrophobic/(super)hydrophilic surfaces (2, 5, 10, 20 µm pattern sizes) with regions of matching/mismatching contact angle hysteresis (CAH) were prepared on the basis of a simple chemisorption/photopatterning of monolayers. The effects of regional wettability/CAH and pattern size on the overall dynamic wettability were then examined by measuring the dynamic contact angles (CAs) and substrate tilt angles (θT) of water. It was found that the dynamic wettability on samples with matching regional CAH remained unchanged, even when using hydrophilic regions or changing the pattern size. In contrast, surfaces containing mismatching CAH regions pinned water droplets, leading to overall dynamic wetting properties markedly dependent on pattern size. In addition, the experimental data did not match values predicted by the Cassie equation because dynamic wetting behavior is dominated not by interfacial area but by the interactions of the liquid and solid at the three-phase contact line.

9.
Materials (Basel) ; 12(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835874

RESUMO

Acrylonitrile butadiene styrene (ABS) is the oldest fused filament fabrication (FFF) material that shows low stability to thermal aging due to hydrogen abstraction of the butadiene monomer. A novel blend of ABS, polypropylene (PP), and polyethylene graft maleic anhydride (PE-g-MAH) is presented for FFF. ANOVA was used to analyze the effects of three variables (bed temperature, printing temperature, and aging interval) on tensile properties of the specimens made on a custom-built pellet printer. The compression and flexure properties were also investigated for the highest thermal combinations. The blend showed high thermal stability with enhanced strength despite three days of aging, as well as high bed and printing temperatures. Fourier-transform infrared spectroscopy (FTIR) provided significant chemical interactions. Differential scanning calorimetry (DSC) confirmed the thermal stability with enhanced enthalpy of glass transition and melting. Thermogravimetric analysis (TGA) also revealed high temperatures for onset and 50% mass degradation. Signs of chemical grafting and physical interlocking in scanning electron microscopy (SEM) also explained the thermo-mechanical stability of the blend.

10.
Materials (Basel) ; 12(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121858

RESUMO

Additive manufacturing (AM) is rapidly evolving as the most comprehensive tool to manufacture products ranging from prototypes to various end-user applications. Fused filament fabrication (FFF) is the most widely used AM technique due to its ability to manufacture complex and relatively high strength parts from many low-cost materials. Generally, the high strength of the printed parts in FFF is attributed to the research in materials and respective process factors (process variables, physical setup, and ambient temperature). However, these factors have not been rigorously reviewed for analyzing their effects on the strength and ductility of different classes of materials. This review systematically elaborates the relationship between materials and the corresponding process factors. The main focus is on the strength and ductility. A hierarchical approach is used to analyze the materials, process parameters, and void control before identifying existing research gaps and future research directions.

11.
RSC Adv ; 9(15): 8333-8339, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518708

RESUMO

A centimeter-sized flat-headed push pin with photothermal properties can be moved on a water surface by a simple near-infrared laser. Using light as an external stimulus allows for the remote control of the timing, direction and velocity of its locomotion. It has been clarified that the vertical orientation of the pin at the air-water interface affects the friction of locomotion, and therefore velocity and acceleration. The pin placed on a water surface with a pin point upward (a point protruding into air phase) moved an average distance of 5.3 ± 2.9 cm following one pulse of laser irradiation, and that placed with a pin point downward (a point protruding into water phase) moved 2.0 ± 1.4 cm. The velocity and acceleration were larger when the pin was placed on the water surface with a pin pointing upward, compared to when placed with the pin pointing downward. Numerical analysis conducted for the locomotions of the pin concluded that the differences in traveling distance, velocity and acceleration were due to the difference in fluid resistance of the pin point in air and water phases during their locomotion. This demonstration of remote control of the motion of small objects by light can open up a wide range of future transport applications.

13.
Adv Sci (Weinh) ; 5(2): 1700528, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29619303

RESUMO

The field of active colloids is attracting significant interest to both enable applications and allow investigations of new collective colloidal phenomena. One convenient active colloidal system that has been much studied is spherical Janus particles, where a hemispherical coating of platinum decomposes hydrogen peroxide to produce rapid motion. However, at present producing these active colloids relies on a physical vapor deposition (PVD) process, which is difficult to scale and requires access to expensive equipment. In this work, it is demonstrated that Pickering emulsion masking combined with solution phase metallization can produce self-motile catalytic Janus particles. Comparison of the motion and catalytic activity with PVD colloids reveals a higher catalytic activity for a given thickness of platinum due to the particulate nature of the deposited coating. This Pickering emulsion based method will assist in producing active colloids for future applications and aid experimental research into a wide range of active colloid phenomena.

14.
J Vis Exp ; (113)2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27404327

RESUMO

We report a method to prepare catalytically active Janus colloids that "swim" in fluids and describe how to determine their 3D motion using fluorescence microscopy. One commonly deployed method for catalytically active colloids to produce enhanced motion is via an asymmetrical distribution of catalyst. Here this is achieved by spin coating a dispersed layer of fluorescent polymeric colloids onto a flat planar substrate, and then using directional platinum vapor deposition to half coat the exposed colloid surface, making a two faced "Janus" structure. The Janus colloids are then re-suspended from the planar substrate into an aqueous solution containing hydrogen peroxide. Hydrogen peroxide serves as a fuel for the platinum catalyst, which is decomposed into water and oxygen, but only on one side of the colloid. The asymmetry results in gradients that produce enhanced motion, or "swimming". A fluorescence microscope, together with a video camera is used to record the motion of individual colloids. The center of the fluorescent emission is found using image analysis to provide an x and y coordinate for each frame of the video. While keeping the microscope focal position fixed, the fluorescence emission from the colloid produces a characteristic concentric ring pattern which is subject to image analysis to determine the particles relative z position. In this way 3D trajectories for the swimming colloid are obtained, allowing swimming velocity to be accurately measured, and physical phenomena such as gravitaxis, which may bias the colloids motion to be detected.


Assuntos
Catálise , Coloides/química , Movimento (Física) , Microscopia de Fluorescência , Gravação em Vídeo , Água
15.
Regen Med ; 11(5): 483-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27404768

RESUMO

This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this 'may be difficult for cell-based medicinal products'. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early. The workshop shared current thinking and best practice and allowed the definition of key research questions. The intent of this report is to summarize the key issues and the consensus reached on each of these by the expert delegates.


Assuntos
Células-Tronco Pluripotentes/transplante , Medicina Regenerativa , Biotecnologia/métodos , Biotecnologia/tendências , Humanos , Instalações Industriais e de Manufatura , Medicina Regenerativa/legislação & jurisprudência , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Reino Unido
16.
Psychol Rep ; 112(3): 913-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24245081

RESUMO

Deterministic attitudes, information about a person's background, one's perceived similarity to a target person, and attributions of effort and ability may affect praiseworthiness. Two vignette studies with college student participants were conducted to consider this issue. Based on regression analyses, attributing achievement to effort was the strongest predictor of praiseworthiness across both studies. In addition, evidence for an augmenting effect of an impoverished background on praiseworthiness was found. In the first study, perceived similarity to the target individual and religious-philosophical determinism were also predictors of praiseworthiness, while belief in free will predicted praiseworthiness in the second study. Judgments of praiseworthiness may be tied to a number of factors; among the most important of these are overcoming an impoverished childhood background and the attributed effort required for success.


Assuntos
Logro , Relações Interpessoais , Julgamento/fisiologia , Percepção Social , Adulto , Cultura , Feminino , Humanos , Masculino , Filosofia , Religião , Adulto Jovem
17.
Mol Imaging ; 12(4): 244-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23651502

RESUMO

Imaging tumors and their response to treatment could be a valuable biomarker toward early assessment of therapy in patients with cancer. Phosphatidylserine (PS) is confined to the inner leaflet of the plasma membrane in normal cells but is externalized on tumor vascular endothelial cells (ECs) and tumor cells, and PS exposure is further enhanced in response to radiation and chemotherapy. In the present study, we evaluated the potential of a PS-targeting human F(ab')2 antibody fragment, PGN650, to detect exposure of PS in tumor-bearing mice. Tumor uptake of PGN650 was measured by near-infrared optical imaging in human tumor xenografts in immunodeficient mice. PGN650 specifically targeted tumors and was shown to target CD31-positive ECs and tumor cells. Tumor uptake of PGN650 was significantly higher in animals pretreated with docetaxel. The peak tumor to normal tissue (T/N) ratio of probe was observed at 24 hours postinjection of probe, and tumor binding was detected for at least 120 hours. In repeat dose studies, PGN650 uptake in tumors was significantly higher following pretreatment with docetaxel compared to baseline uptake prior to treatment. PGN650 may be a useful probe to detect PS exposed in tumors and to monitor enhanced PS exposure to optimize therapeutic agents to treat tumors.


Assuntos
Anticorpos/química , Diagnóstico por Imagem/métodos , Fosfatidilserinas/química , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Neoplasias
18.
J Food Sci ; 77(6): S216-25, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22671530

RESUMO

UNLABELLED: A predictive color matching model based on the colorimetric technique was developed and used to calculate the concentrations of primary food dyes needed in a model food substrate to match a set of standard tile colors. This research is the first stage in the development of novel three-dimensional (3D) foods in which color images or designs can be rapidly reproduced in 3D form. Absorption coefficients were derived for each dye, from a concentration series in the model substrate, a microwave-baked cake. When used in a linear, additive blending model these coefficients were able to predict cake color from selected dye blends to within 3 ΔE*(ab,10) color difference units, or within the limit of a visually acceptable match. Absorption coefficients were converted to pseudo X10, Y10, and Z10 tri-stimulus values (X10(P), Y10(P), Z10(P)) for colorimetric matching. The Allen algorithm was used to calculate dye concentrations to match the X10(P), Y10(P), and Z10(P) values of each tile color. Several recipes for each color were computed with the tile specular component included or excluded, and tested in the cake. Some tile colors proved out-of-gamut, limited by legal dye concentrations; these were scaled to within legal range. Actual differences suggest reasonable visual matches could be achieved for within-gamut tile colors. The Allen algorithm, with appropriate adjustments of concentration outputs, could provide a sufficiently rapid and accurate calculation tool for 3D color food printing. PRACTICAL APPLICATION: The predictive color matching approach shows potential for use in a novel embodiment of 3D food printing in which a color image or design could be rendered within a food matrix through the selective blending of primary dyes to reproduce each color element. The on-demand nature of this food application requires rapid color outputs which could be provided by the color matching technique, currently used in nonfood industries, rather than by empirical food industry methods.


Assuntos
Cor , Fast Foods/análise , Corantes de Alimentos/análise , Interpretação de Imagem Assistida por Computador , Algoritmos , Cor/normas , Colorimetria , Culinária , Corantes de Alimentos/química , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Micro-Ondas , Modelos Químicos , Concentração Osmolar
20.
J Ind Microbiol Biotechnol ; 34(5): 393-402, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17318488

RESUMO

The protein-bound polysaccharides of Coriolus versicolor (CPS) have been reported to stimulate overall immune functions against cancers and various infectious diseases by activating specific cell functions. A New Zealand isolate (Wr-74) and a patented strain (ATCC-20545) of C. versicolor were compared in this study. The fruit bodies of both strains were grown for visual verification. Both strains were grown in submerged-culture using an airlift fermentor with milk permeate as the base medium supplemented with glucose, yeast extract and salt. Metabolic profiles of both strains obtained over 7-day fermentation showed very similar trends in terms of biomass production (8.9-10.6 mg/ml), amounts of extracellular polysaccharide (EPS) from the culture medium (1150-1132 microg/ml), and intracellular polysaccharide (IPS) from the mycelium (80-100 microg/ml). Glucose was the dominant sugar in both EPS and IPS, and the polymers each consisted of three molecular weight fractions ranging from 2 x 10(6) to 3 x 10(3 )Da. Both the EPS and IPS were able to significantly induce cytokine production (interleukin 12 and gamma interferon) in murine splenocytes in vitro. Highest levels of interleukin 12 (291 pg/ml) and gamma interferon (6,159 pg/ml) were obtained from samples containing Wr-74 IPS (0.06 microg/ml) and ATCC 20545 IPS (0.1 microg/ml), respectively. The results indicated that lower levels of EPS and IPS generally resulted in higher immune responses than did higher polymer concentrations.


Assuntos
Fermentação , Polyporales/metabolismo , Polissacarídeos/metabolismo , Aminoácidos/química , Biomassa , Meios de Cultura , Citocinas/biossíntese , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/química , Técnicas Microbiológicas/instrumentação , Peso Molecular , Polyporales/classificação , Polyporales/crescimento & desenvolvimento , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...