Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 660965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093191

RESUMO

Background: Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor, and atazanavir (ATV), a protease inhibitor, are drugs widely used in antiretroviral therapy (ART) for people living with HIV. These drugs have shown high interindividual variability in adverse drug reactions (ADRs). UGT1A1*28 and CYP2B6 c.516G>T have been proposed to be related with higher toxicity by ATV and EFV, respectively. Objective: To study the association between genetic polymorphisms and ADRs related to EFV or ATV in patients living with HIV treated at a public hospital in Chile. Methods: Epidemiologic, case-control, retrospective, observational study in 67 adult patients under EFV or ATV treatment was conducted, in the San Juan de Dios Hospital. Data were obtained from patients' medical records. Genotype analyses were performed using rtPCR for rs887829 (indirect identification of UGT1A1*28 allele) and rs3745274 (CYP2B6 c.516G>T), with TaqMan® probes. The association analyses were performed with univariate logistic regression between genetic variants using three inheritance models (codominant, recessive, and dominant). Results: In ATV-treated patients, hyperbilirubinemia (total bilirubin >1.2 mg/dl) had the main incidence (61.11%), and moderate and severe hyperbilirubinemia (total bilirubin >1.9 mg/dl) were statistically associated with UGT1A1*28 in recessive and codominant inheritance models (OR = 16.33, p = 0.028 and OR = 10.82, p = 0.036, respectively). On the other hand, in EFV-treated patients adverse reactions associated with CNS toxicity reached 34.21%. In this respect, nightmares showed significant association with CYP2B6 c.516G>T, in codominant and recessive inheritance models (OR = 12.00, p = 0.031 and OR = 7.14, p = 0.042, respectively). Grouped CNS ADRs (nightmares, insomnia, anxiety, and suicide attempt) also showed a statistically significant association with CYP2B6 c.516G > T in the codominant and recessive models (OR = 30.00, p = 0.011 and OR = 14.99, p = 0.021, respectively). Conclusion: Our findings suggest that after treatment with ATV or EFV, UGT1A1*28 and CYP2B6 c.516G>T influence the appearance of moderate-to-severe hyperbilirubinemia and CNS toxicity, respectively. However, larger prospective studies will be necessary to validate these associations in our population. Without a doubt, improving adherence in patients living with HIV is a critical issue to the success of therapy. Hence, validating and applying international pharmacogenetic recommendations in Latin American countries would improve the precision of ART: a fundamental aspect to achieve the 95-95-95 treatment target proposed by UNAIDS.

2.
Mol Hum Reprod ; 23(6): 393-405, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333280

RESUMO

STUDY QUESTION: How does hCG signal in human endometrial stromal cells (ESCs) and what is its role in regulating ESC function? SUMMARY ANSWER: hCG signaling in ESCs activates the extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) pathway through exchange protein activated by cyclic AMP (cAMP) (Epac) and transiently increases progesterone receptor (PR) transcript and protein expression and its transcriptional function. WHAT IS KNOWN ALREADY: hCG is one of the earliest embryo-derived secreted signals in the endometrium, which abundantly expresses LH/hCG receptors. hCG signals through cAMP/protein kinase A (PKA) in gonadal cells, but in endometrial epithelial cells, hCG induces Erk1/2 activation independent of the cAMP/PKA pathway. Few data exist concerning the signal transduction pathways triggered by hCG in ESCs and their role in regulation of ESC function. STUDY DESIGN, SIZE, DURATION: This is an in vitro study comprising patients undergoing benign gynecological surgery (n = 46). PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometrial samples were collected from normal cycling women during the mid-secretory phase for ESCs isolation. The study conducted in an academic research laboratory within a tertiary-care hospital. The activation of the Erk1/2 signal transduction pathway elicited by hCG was evaluated in ESC. Signaling pathway inhibitors were used to examine the roles of PKA, PI3K, PKC, adenylyl cyclase and Epac on the hCG-stimulated up-regulation of phospho-Erk1/2 (pErk1/2). Erk1/2 phosphorylation was determined by immunoblot. siRNA targeting Epac was used to investigate the molecular mechanisms. To assess the role of Erk1/2 signaling induced by hCG on ESC function, gene expression regulation was examined by immunofluorescence and real-time quantitative PCR. The role of PR on the regulation of transcript levels was studied using progesterone and the PR antagonist RU486. All experiments were conducted using at least three different cell culture preparations in triplicate. MAIN RESULTS AND THE ROLE OF CHANCE: Addition of hCG to ESCs in vitro induced the phosphorylation of Erk1/2 through cAMP accumulation. Such induction could not be blocked by inhibitors for PKA, PKC and PI3K. Epac inhibition and knockdown with siRNA prevented pErk1/2 induction by hCG. ESCs stimulated with hCG for up to 72 h showed a significant increase in PR mRNA and immunofluorescent label at 48 h only; an effect that was abrogated with the mitogen-activated protein kinase kinase inhibitor UO126. In addition, the hCG-activated Erk1/2 pathway significantly decreased the mRNA levels for secreted frizzled-related protein 4 (SFRP4) at 24 h, whereas it increased those for homeobox A10 (HOXA10) at 48 h (P = 0.041 and P = 0.022 versus control, respectively). Prolactin mRNA levels were not significantly modified. HOXA10 mRNA up-regulation by hCG was not enhanced by co-stimulation with progesterone; however, it was completely abolished in the presence of RU486 (P = 0.036 hCG versus hCG + RU486). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study utilizing stromal cell cultures from human endometrial tissues. Furthermore, results obtained should also be confirmed in vivo in the context of the whole human endometrial tissue and hormonal milieu. The in vitro experiments using hCG have been conducted without other hormones/factors that may also modulate the ESCs response to hCG. WIDER IMPLICATIONS OF THE FINDINGS: We have determined that hCG induces the PR through the Erk1/2 pathway in ESCs which may render them more sensitive to progesterone, increasing our understanding about the effects of hCG at the embryo-maternal interface. The activation of such a pathway in the context of the hormonal milieu during the window of implantation might contribute to a successful dialog between the embryo and the uterus, leading to appropriate endometrial function. Defective hCG signaling in the endometrial stromal tissue may lead to an incomplete uterine response, compromising embryo implantation and early pregnancy. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Fund for Scientific and Technological Development, Government of Chile (FONDECYT) grants 11100443 and 1140614 (A.T.-P.). The authors have no conflicts of interest to declare.


Assuntos
Gonadotropina Coriônica/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Receptores de Progesterona/genética , Células Estromais/efeitos dos fármacos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Adulto , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endométrio/citologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Homeobox A10 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Gravidez , Cultura Primária de Células , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...