Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397413

RESUMO

Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.


Assuntos
RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/química , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro
2.
Biochem Mol Biol Educ ; 51(2): 230-235, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597896

RESUMO

Transcription is the critical first step in expressing a gene, during which an RNA polymerase (RNAP) synthesizes an RNA copy of one strand of the DNA that encodes a gene. Here we describe a laboratory experiment that uses a single assay to probe two important steps in transcription: (1) RNAP binding to DNA, and (2) the transcriptional activity of the polymerase. Students probe both these steps in a single experiment using a fluorescence-based electrophoretic mobility shift assay (EMSA) and commercially available Escherichia coli RNAP. As an inquiry-driven component, students add the transcriptional inhibitor rifampicin to reactions and draw conclusions about its mechanism of inhibition by determining whether it blocks polymerase binding to DNA or transcriptional activity. Depending on the curriculum and learning goals of individual courses, this experimental module could be easily expanded to include additional experimentation that mimics a research environment more closely. After completing the experiment students understand basic principles of transcription, mechanisms of inhibition, and the use of EMSAs to probe protein/DNA interactions.


Assuntos
Proteínas de Ligação a DNA , Escherichia coli , Humanos , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Ligação a DNA/química , Ligação Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...