Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124772, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172706

RESUMO

Evolution of new variants of SARS-CoV-2 warrant the need for the continued efforts in identifying target-oriented new drugs. Dual targeting agents against MPro and PLPro not only overcome the incomplete efficacy but also the drug resistance, which is common problem. Since both these are cysteine proteases, we designed 2-chloroquinoline based molecules with additional imine moiety in the middle as possible nucleophilic warheads. In the first round of design and synthesis, three molecules (C3, C4 and C5) inhibited (Ki < 2 µM) only MPro by binding covalently to C145 and one molecule (C10) inhibited both the proteases non-covalently (Ki < 2 µM) with negligible cytotoxicity. Further conversion of the imine in C10 to azetidinone (C11) improved the potency against both the enzymes in the nanomolar range (820 nM against MPro and 350 nM against PLPro) with no cytotoxicity. Conversion of imine to thiazolidinone (C12), reduced the inhibition by 3-5 folds against both the enzymes. Biochemical and computational studies suggest that C10-C12 bind in the substrate binding pocket of MPro and in the BL2 loop of the PLPro. Since these dual inhibitors have least cytotoxicity, they could be further explored as therapeutics against the SARS-CoV-2 and other analogous viruses.


Assuntos
COVID-19 , Cisteína Proteases , Humanos , SARS-CoV-2 , Iminas , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
2.
Curr Protein Pept Sci ; 23(4): 271-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598242

RESUMO

Human parasites cause several diseased conditions with high morbidity and mortality in a large section of the population residing in various geographical areas. Nearly three billion people suffer from either one or many parasitic infections globally, with almost one million deaths annually. In spite of extensive research and advancement in the medical field, no effective vaccine is available against prominent human parasitic diseases that necessitate identification of novel targets for designing specific inhibitors. Vitamin B6 is an important ubiquitous co-enzyme that participates in several biological processes and plays an important role in scavenging ROS (reactive oxygen species) along with providing resistance to oxidative stress. Moreover, the absence of the de novo vitamin B6 biosynthetic pathway in human parasites makes this pathway indispensable for the survival of these pathogens. Pyridoxal kinase (PdxK) is a crucial enzyme for vitamin B6 salvage pathway and participates in the process of vitamers B6 phosphorylation. Since the parasites are dependent on pyridoxal kinase for their survival and infectivity to the respective hosts, it is considered a promising candidate for drug discovery. The detailed structural analysis of PdxK from disease-causing parasites has provided insights into the catalytic mechanism of this enzyme as well as significant differences from their human counterpart. Simultaneously, structure-based studies have identified small lead molecules that can be exploited for drug discovery against protozoan parasites. The present review provides structural and functional highlights of pyridoxal kinase for its implication in developing novel and potent therapeutics to combat fatal parasitic diseases.


Assuntos
Parasitos , Piridoxal Quinase , Animais , Descoberta de Drogas , Humanos , Parasitos/metabolismo , Piridoxal Quinase/química , Piridoxal Quinase/genética , Piridoxal Quinase/metabolismo , Piridoxina/metabolismo , Vitamina B 6/química , Vitamina B 6/metabolismo , Vitamina B 6/farmacologia
3.
ACS Omega ; 7(1): 548-564, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036723

RESUMO

Pentose phosphate pathway (PPP) plays a crucial role in the maintenance of NADPH/NADP+ homeostasis and provides protection against oxidative stress through detoxification of the reactive oxygen species. Ribulose-5-phosphate epimerase (RPE) participates in catalysis of the interconversion of ribulose-5-phosphate (Ru5P) to xylulose-5-phosphate (Xu5P) during PPP, however the structural attributes of this enzyme are still underexplored in many human pathogens including leishmanial parasites. The present study focuses upon cloning, purification and characterization of RPE of Leishmania donovani (LdRPE) using various biophysical and structural approaches. Sequence analysis has shown the presence of trypanosomatid-specific insertions at the N-terminus that are absent in humans and other eukaryotes. Gel filtration chromatography indicated recombinant LdRPE to exist as a dimer in the solution. Circular dichroism studies revealed a higher alpha helical content at physiological pH and temperature that comparatively varies with changing these parameters. Additionally, intrinsic fluorescence and quenching studies of LdRPE have depicted that tryptophan residues are mainly buried in the hydrophobic regions, and the recombinant enzyme is moderately tolerant to urea. Moreover, homology modeling was employed to generate the three-dimensional structure of LdRPE followed by molecular docking with the substrate, product, and substrate analogues. The modeled structure of LdRPE unravelled the presence of conserved active site residues as well as a single binding pocket for the substrate and product, while an in silico study suggested binding of substrate analogues into a similar pocket with more affinity than the substrate. Additionally, molecular dynamics simulation analysis has deciphered complexes of LdRPE with most of the ligands exhibiting more stability than its apo form and lesser fluctuations in active site residues in the presence of ligands. Altogether, our study presents structural insights into leishmanial RPE that could provide the basis for its implication to develop potent antileishmanials.

4.
Int J Biol Macromol ; 152: 812-827, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105687

RESUMO

The enzyme pyridoxal kinase (PdxK) catalyzes the conversion of pyridoxal to pyridoxal-5'-phosphate (PLP) using ATP as the co-factor. The product pyridoxal-5'-phosphate plays a key role in several biological processes such as transamination, decarboxylation and deamination. In the present study, full-length ORF of PdxK from Leishmania donovani (LdPdxK) was cloned and then purified using affinity chromatography. LdPdxK exists as a homo-dimer in solution and shows more activity at near to physiological pH. Biochemical analysis of LdPdxK with pyridoxal, pyridoxamine, pyridoxine and ginkgotoxin revealed its affinity preference towards different substrates. The secondary structure analysis using circular dichroism spectroscopy showed LdPdxK to be predominantly α-helical in organization which tends to decline at lower and higher pH. Simultaneously, LdPdxK was crystallized and its three-dimensional structure in complex with ADP and different substrates were determined. Crystal structure of LdPdxK delineated that it has a central core of ß-sheets surrounded by α-helices with a conserved GTGD ribokinase motif. The structures of LdPdxK disclosed no major structural changes between ADP and ADP- substrate bound structures. In addition, comparative structural analysis highlighted the key differences between the active site pockets of leishmanial and human PdxK, rendering LdPdxK an attractive candidate for the designing of novel and specific inhibitors.


Assuntos
Leishmania donovani/metabolismo , Piridoxal Quinase/química , Piridoxal Quinase/metabolismo , Especificidade por Substrato/fisiologia , Sequência de Aminoácidos , Domínio Catalítico/fisiologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Conformação Proteica , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Piridoxamina/química , Piridoxamina/metabolismo , Piridoxina/análogos & derivados , Piridoxina/química , Piridoxina/metabolismo
5.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 2): 99-104, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400319

RESUMO

Leishmania is an auxotrophic protozoan parasite which acquires D-ribose by transporting it from the host cell and also by the hydrolysis of nucleosides. The enzyme ribokinase (RK) catalyzes the first step of ribose metabolism by phosphorylating D-ribose using ATP to produce D-ribose-5-phosphate. To understand its structure and function, the gene encoding RK from L. donovani was cloned, expressed and purified using affinity and size-exclusion chromatography. Circular-dichroism spectroscopy of the purified protein showed comparatively more α-helix in the secondary-structure content, and thermal unfolding revealed the Tm to be 317.2 K. Kinetic parameters were obtained by functional characterization of L. donovani RK, and the Km values for ribose and ATP were found to be 296 ± 36 and 116 ± 9.0 µM, respectively. Crystals obtained by the hanging-drop vapour-diffusion method diffracted to 1.95 Šresolution and belonged to the hexagonal space group P61, with unit-cell parameters a = b = 100.25, c = 126.77 Å. Analysis of the crystal content indicated the presence of two protomers in the asymmetric unit, with a Matthews coefficient (VM) of 2.45 Å3 Da-1 and 49.8% solvent content. Further study revealed that human counterpart of this protein could be used as a template to determine the first three-dimensional structure of the RK from trypanosomatid parasites.


Assuntos
Leishmania donovani/enzimologia , Leishmania donovani/genética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...