Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38063735

RESUMO

Solid-state supercapacitors with areal capacitance in the order of 100 mF⋅cm-2 are developed on paper substrates, using eco-friendly, low-cost materials and a simple technology. The electrochemically active material used as the electrode is prepared from a stable water-based ink, obtained by doping commercial polypyrrole (PPY) powder with dodecylbenzene sulfonic acid (DBSA), and characterized by optical and electrical measurements, Raman investigation and Atomic Force Microscopy. The PPY:DBSA ink can be directly applied on paper by means of rechargeable water pens, obtaining, after drying, electrically conducting solid state tracks. The PPY:DBSA layers are then interfaced to one another through a polymer gel based on potassium hydroxide and chitosan, acting both as the ion-conducting medium and as the separator. The areal capacitance of the devices developed by following such a simple rule can be improved when the PPY:DBSA ink is applied in combination with other nanostructured carbon material.

2.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299990

RESUMO

The Internet of Things (IoT) is gaining more and more popularity and it is establishing itself in all areas, from industry to everyday life. Given its pervasiveness and considering the problems that afflict today's world, that must be carefully monitored and addressed to guarantee a future for the new generations, the sustainability of technological solutions must be a focal point in the activities of researchers in the field. Many of these solutions are based on flexible, printed or wearable electronics. The choice of materials therefore becomes fundamental, just as it is crucial to provide the necessary power supply in a green way. In this paper we want to analyze the state of the art of flexible electronics for the IoT, paying particular attention to the issue of sustainability. Furthermore, considerations will be made on how the skills required for the designers of such flexible circuits, the features required to the new design tools and the characterization of electronic circuits are changing.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Eletrônica , Tecnologia , Fontes de Energia Elétrica
3.
J Funct Biomater ; 13(2)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35466221

RESUMO

Achieving homogenous dispersion of nanoparticles inside a polymeric matrix is a great challenge for numerous applications. In the present study, we aim at understanding the role of different factors on the dispersion properties of TiO2 in pluronic F-127 mixtures. The mixtures were prepared with different pH and guest/host ratios and investigated by UV-Vis spectroscopy, dynamic light scattering, infrared spectroscopy and electrical conductivity. Depending on the preparation conditions, different amounts of TiO2 were loaded within the copolymer as quantitatively determined by UV-Vis spectroscopy. The different content of nanoparticles has direct implications on the gelation and micellization of pluronic analyzed by dynamic light scattering. The information derived on the self-assembly behavior was interpreted in relation to the infrared and conductivity measurements results. Together, these results shed light on the most favorable conditions for improving the nanoparticle dispersion inside the copolymer matrix and suggest a possible strategy to design functional nanoparticle-polymer systems.

4.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685029

RESUMO

Flexible energy storage devices and supercapacitors in particular have become very attractive due to the growing demand for wearable consumer devices. To obtain supercapacitors with improved performance, it is useful to resort to hybrid electrodes, usually nanocomposites, that combine the excellent charge transport properties and high surface area of nanostructured carbon with the electrochemical activity of suitable metal oxides or conjugated polymers. In this work, electrochemically active conducting inks are developed starting from commercially available polypyrrole and graphene nanoplatelets blended with dodecylbenzenesulfonic acid. Films prepared by applying the developed inks are characterized by means of Raman measurements, Fourier Transform Infrared (FTIR) analysis, and Atomic Force Microscopy (AFM) investigations. Planar supercapacitor prototypes with an active area below ten mm2 are then prepared by applying the inks onto transparency sheets, separated by an ion-permeable nafion layer impregnated with lithium hexafluorophospate, and characterized by means of electrical measurements. According to the experimental results, the devices show both pseudocapacitive and electric double layer behavior, resulting in areal capacitance that, when obtained from about 100 mF⋅cm-2 in the sample with polypyrrole-based electrodes, increases by a factor of about 3 when using electrodes deposited from inks containing polypyrrole and graphene nanoplateles.

5.
Sensors (Basel) ; 17(10)2017 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-28946638

RESUMO

Electrochemical dissolution of metallic copper into slightly acidic aqueous solutions of chitosan yields a clear and stable dispersion of Copper Oxide nanoparticles into the organic polymer host. The electrochemically synthesized chitosan:CuOx nanocomposite is characterized by means of spectrophotometry, frequency domain electrical measurements and morphological analysis. Solid state electrochemical cells having pure chitosan as the electrolyte and using chitosan:CuOx as the electrode, are developed and characterized by means of electrical measurements performed in the ±1 V voltage window. The current-voltage loops of the cells, measured in deionized water, are found to reversibly change in response to hydrogen peroxide added to the water in 0.2 µM subsequent steps. Such changes, clearly distinguishable from changes recorded in response to other analytes, can be exploited in order to develop a hydrogen peroxide sensor able to work without the need for any supporting electrolyte.

6.
Sensors (Basel) ; 13(3): 3878-88, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23529125

RESUMO

Electrochemical devices using as substrates copier grade transparency sheets are developed by using ion conducting Nafion:polypyrrole mixtures, deposited between gold bottom electrodes and upper electrodes based on Multi Walled Carbon Nanotubes (MWCNTs). The electrical properties of the Nafion:polypyrrole blends and of the gold/Nafion:polypyrrole/MWCNTs devices are investigated under dry conditions and in deionized water by means of frequency dependent impedance measurements and time domain electrical characterization. According to current-voltage measurements carried out in deionized water, the steady state current forms cycles characterized by redox peaks, the intensity and position of which reversibly change in response to H2O2, with a lower detection limit in the micromolar range. The sensitivity that is obtained is comparable with that of other electrochemical sensors that however, unlike our devices, require supporting electrolytes.


Assuntos
Técnicas Eletroquímicas/instrumentação , Peróxido de Hidrogênio/isolamento & purificação , Polímeros/química , Pirróis/química , Eletricidade , Polímeros de Fluorcarboneto/química , Ouro/química , Peróxido de Hidrogênio/química , Nanotubos de Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...