Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005736

RESUMO

Anthropogenic disturbance of tropical humid forests leads to habitat loss, biodiversity decline, landscape fragmentation, altered nutrient cycling and carbon sequestration, soil erosion, pest/pathogen outbreaks, among others. Nevertheless, the impact of these alterations in multitrophic interactions, including host-pathogen and vector-pathogen dynamics, is still not well understood in wild plants. This study aimed to provide insights into the main drivers for the incidence of herbivory and plant pathogen damage, specifically, into how vegetation traits at the local and landscape scale modulate such interactions. For this purpose, in the tropical forest of Calakmul (Campeche, Mexico), we characterised the foliar damage caused by herbivores and pathogens in woody vegetation of 13 sampling sites representing a gradient of forest disturbance and fragmentation in an anthropogenic landscape from well preserved to highly disturbed and fragmented areas. We also evaluated how the incidence of such damage was modulated by the vegetation and landscape attributes. We found that the incidence of damage caused by larger, mobile, generalist herbivores, was more sensitive to changes in landscape configuration, while the incidence of damage caused by small and specialised herbivores with low dispersal capacity was more influenced by vegetation and landscape composition. In relation to pathogen symptoms, the herbivore-induced foliar damage seems to be the main factor related to their incidence, indicating the enormous importance of herbivorous insects in the modulation of disease dynamics across tropical vegetation, as they could be acting as vectors and/or facilitating the entry of pathogens by breaking the foliar tissue and the plant defensive barriers. The incidence of pathogen damage also responded to vegetation structure and landscape configuration; the incidence of anthracnose, black spot, and chlorosis, for example, were favoured in sites surrounded by smaller patches and a higher edge density, as well as those with a greater aggregation of semi-evergreen forest patches. Fungal pathogens were shown to be an important cause of foliar damage for many woody species. Our results indicate that an increasing transformation and fragmentation of the tropical forest of southern Mexico could reduce the degree of specialisation in plant-herbivore interactions and enhance the proliferation of generalist herbivores (chewers and scrapers) and of mobile leaf suckers, and consequently, the proliferation of some symptoms associated with fungal pathogens such as fungus black spots and anthracnose. The symptoms associated with viral and bacterial diseases and to nutrient deficiency, such as chlorosis, could also increase in the vegetation in fragmented landscapes with important consequences in the health and productivity of wild and cultivated plant species. This is a pioneering study evaluating the effect of disturbances on multitrophic interactions, offering key insights on the main drivers of the changes in herbivory interactions and incidence of plant pathogens in tropical forests.

2.
Front Bioeng Biotechnol ; 11: 1085976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168612

RESUMO

Background: The epidemiologic transition in Mexico has generated a change of paradigm in public health. Morbidity is characterized by infectious diseases and the mortality is due to chronic degenerative diseases. The three most important infectious diseases in the country are: respiratory infections, diarrhea, and urinary tract infections. Method: The objective of this work was to build a tool to monitor the presence of health risks in the environment in a timely manner and to demonstrate its application in different sicknesses, especially those that are water related. In this study, we analyzed water samples from five cenotes with high tourist flow in the State of Yucatan. We developed a DNA microarray for the adequate and prompt detection of viruses, bacteria, fungi, and parasites. This microarray could be used in samples of different origin including air, water (fresh, brackish and saltwater), food, inert surfaces or wounds. Clinically, it would allow prompt and precise detection of etiological agents of infectious diseases to prevent outbreaks. It would also be useful for the identification of those agents that cannot be detected in our laboratories with the traditional methods. It includes 38,000 probes that detect 252 etiological agents of diseases in humans and antimicrobial resistance genes. Results from DNA samples can be obtained in 24 h, which would be difficult or impossible using other technologies. Results: The results are readily available within 24 h. Samples from five cenotes (sinkholes) with high flow of people, were analyzed with the microarray. The water samples analyzed detected 228 different bacteria, viruses, fungi, and protozoa. They are amongst the most important etiological agents for infectious diseases in Mexico. Conclusions: The microarray provides the opportunity for precise and early detection of various infectious agents in individuals, hospitals and natural environments. This could help reduce the global burden of diseases, the severity of outbreaks, and reduce antibiotic resistance.

3.
World J Microbiol Biotechnol ; 38(12): 254, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318350

RESUMO

This article describes the consolidation effects of bacterial biopolymers synthesized by biofilm bacteria colonizing Mayan limestone buildings on the surface properties of limestone blocks, including disaggregation, hardness, and total color change at the laboratory level. The biopolymers evaluated, produced by bacterial isolates TM1B-488, TM1B-489, TM1B-349, and TM1B-464, influenced surface properties at different levels. 16S rRNA gene sequences analysis showed that isolate TM1B-349 was related with Psychrobacter sp. strain Marseille P-5312, TM1B-464 was related with Agrococcus terreus strain BT116, and isolates TM1B-488 and TM1B-489 were related with Xanthomonas citri pv. mangiferaeindicae strain XC01. Biopolymer A reduced the surface disaggregation of the material (26%) compared to the untreated control, as revealed by the peeling test, followed by biopolymer B (10%), while the remaining biopolymers had a negligible effect. The cactus biopolymer reduced disaggregation at higher levels (37%). On the other hand, there was a similar concomitant increase in surface hardness of limestone samples coated with biopolymer A (34%) and biopolymer B (32%), higher than biopolymers C (10%) and D (19%). Total color change for all treatments was below the threshold value of 5, indicating a non-significant color alteration. Partial chemical characterization of best-performing biopolymer (A) suggests its probable glycoprotein nature, whose constitutive acidic monosaccharides probably contributed to higher adherence to the limestone surfaces, contributing to surface stabilization, hardening the surface, and decreasing surface decohesion. These preliminary findings suggest its potential application in bioconsolidants, but further studies are required.


Assuntos
Bactérias , Carbonato de Cálcio , RNA Ribossômico 16S/genética , Biopolímeros/química , Biofilmes
4.
Plants (Basel) ; 11(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214850

RESUMO

The effect of anthropogenic disturbance on plant community traits and tradeoffs remains poorly explored in tropical forests. In this study, we aimed to identify tradeoffs between defense and other plant functions related to growth processes in order to detect potential aboveground and edaphic environmental conditions modulating traits variation on plant communities, and to find potential assembly rules underlying species coexistence in secondary (SEF) and old-growth forests (OGF). We measured the foliar content of defense phytochemicals and leaf traits related to fundamental functions on 77 species found in SEF and OGF sites in the Jalisco dry forest ecoregion, Mexico, and we explored (1) the trait-trait and trait-habitat associations, (2) the intra and interspecies trait variation, and (3) the traits-environment associations. We found that phytochemical content was associated with high leaf density and leaf fresh mass, resulting in leaves resistant to drought and high radiation, with chemical and physical defenses against herbivore/pathogen attack. The phytochemicals and chlorophyll concentrations were negatively related, matching the predictions of the Protein Competition Model. The phylogenetic signal in functional traits, suggests that abundant clades share the ability to resist the harsh biotic and abiotic conditions and face similar tradeoffs between productive and defensive functions. Environmental filters could modulate the enhanced expression of defensive phytochemicals in SEF, while, in OGFs, we found a stronger filtering effect driving community assembly. This could allow for the coexistence of different defensive strategies in OGFs, where a greater species richness could dilute the prevalence of pathogens/herbivores. Consequently, anthropogenic disturbance could alter TDF ecosystem properties/services and functioning.

5.
Sci Total Environ ; 642: 1060-1074, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045488

RESUMO

Coastal environments harbor diverse microbial communities, which can contain genera with potential bioremediation activity. Next-generation DNA sequencing was used to identify bacteria to the genus level in water and sediment samples collected from the open ocean, shoreline, wetlands and freshwater upwellings on the northwest coast of the Yucatan Peninsula. Supported by an extensive literature review, a phylogenetic investigation of the communities was done using reconstruction of unobserved states software (PICRUSt) to predict metagenome functional content from the sequenced 16S gene in all the samples. Bacterial genera were identified for their potential hydrocarbon bioremediation activity. These included generalist genera commonly reported in hydrocarbon-polluted areas and petroleum reservoirs, as well as specialists such as Alcanivorax and Cycloclasticus. The highest readings for bacteria with potential hydrocarbon bioremediation activity were for the genera Vibrio, Alteromonas, Pseudomonas, Acinetobacter, Burkholderia, Acidovorax and Pseudoalteromonas from different environments in the study area. Some genera were identified only in specific sites; for example, Aquabacterium and Polaromonas were found only in freshwater upwellings. Variation in genera distribution was probably due to differences in environmental conditions in the sampled zones. Bacterial diversity was high in the study area and included numerous genera with known bioremediation activity. Functional prediction of the metagenome indicated that the studied bacterial communities would most probably degrade toluene, naphthalene, chloroalkane and chloroalkene, with lower degradation proportions for aromatic hydrocarbons, fluorobenzoate and xylene. Differences in predicted degradation existed between sediments and water, and between different locations.


Assuntos
Biodegradação Ambiental , Bioprospecção , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , México , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA
6.
Sci Total Environ ; 628-629: 528-538, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453182

RESUMO

Biobed systems are an important option to control point pollution in agricultural areas. Substrates used and microbial diversity present in a biomixture perform an essential function in pesticide dissipation. In this study, the effects of soil (50% of volume/volume [V/V] proportion for all biomixtures) and four soil-based biomixtures (miniaturized biobeds; addition of novel substrates from southeastern Mexico) on dissipation of high concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, carbofuran, diazinon, and glyphosate and on microbial diversity in biomixtures were evaluated. Small residual amounts of all pesticides at 20 (<2%) and 41 (<1%) days were observed; however, the lowest efficiency rates were observed in soil. Glyphosate was the only pesticide that completely dissipated in soil and biomixtures. Archaea, bacteria, and fungi were identified in biobeds, with bacteria being the most diverse microorganisms according to the identified species. The presence of white-rot fungi (normally related to pesticide degradation in biomixtures) was observed. Effects of the pesticide type and of biomixtures on pesticide dissipation were significant (P<0.05); however, only the effect of biomixtures on microbial diversity was significant (P<0.05); microbial diversity and richness had a significant effect on the residual amount of pesticides (P<0.05). Microbial diversity in terms of phyla was directly related to physicochemical parameters such as organic matter, lignin, water-holding capacity, and pH of soil and biomixtures.


Assuntos
Biodegradação Ambiental , Praguicidas/metabolismo , Eliminação de Resíduos/métodos , Poluentes do Solo/metabolismo , México , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...