Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 690: 1151-1161, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31470478

RESUMO

Shooting activities is an important source of Pb in contaminated soils. Lead accumulates in superficial soil horizons because of its low mobility, favouring its uptake by plants and representing a high transference risk to the trophic chain. A combination of phytoremediation with nanoremediation techniques can be used to recover firing range soils and decrease the mobility, bioavailability and toxicity of Pb. This study examines in depth the changes in Pb behaviour in firing range soils by adding hydroxyapatite nanoparticles (HANPs). These nanoparticles (NPs) may immobilise Pb and improve the quality of these areas. The use of HANPs and the Pb effects were assessed in three different species (Sinapis alba L., Lactuca sativa L. and Festuca ovina L.), focusing on their germination and early growth, through phytotoxicity assays. Single extractions with CaCl2 (0.01 M) in soils treated with HANPs show that these NPs retained Pb and reduced highly its availability and mobility. HR-TEM and TOF-SIMS were used to determine the interactions between HANPs and Pb, as well as with soil components. According to TOF-SIMS and HR-TEM/EDS analysis, Pb was mainly retained by HANPs but also associated lightly to organic matter, Fe compounds and silicates. Phytotoxicity assays exposed that S. alba, L. sativa and F. ovina were able to germinate and develop in the firing range soils despite the high available Pb contents before adding HANPs. After adding HANPs, Pb retention increased, favouring the germination and the growth of roots in the three species. These results suggest that HANPs can be used to decrease the availability and the toxicity of Pb without negative effects in the species growth. Accordingly, the combination of phytoremediation and nanoremediation techniques can be a great tool to stabilise these soils, avoiding the Pb transfer to nearby areas and its entry in the trophic chain.


Assuntos
Durapatita/química , Recuperação e Remediação Ambiental/métodos , Chumbo/toxicidade , Nanopartículas/química , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Bioensaio , Solo , Armas
2.
Sci Total Environ ; 571: 1136-46, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27450953

RESUMO

Shooting activities are a very important source of contamination as they are commonly detected high concentrations of Pb in the soils from these facilities. Different remediation methods imply the immobilization of the pollutants by decreasing their mobility and availability and nanotechnology is a promising technique in this field. The effectiveness of calcium phosphate nanoparticles (CPNs) in the remediation of small-arms firing range and trap shooting range soils is evaluated in this work. The operationally defined extractable content of Pb, Cu and Zn is determined together with the interaction of the pollutants with the nanomaterials. Soil samples were treated with the CPNs and after the treatment the extractable contents of Cu, Pb and Zn decrease. To check the retention by the nanoparticles TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometry) and HR-TEM-EDS (High Resolution Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy) techniques were applied. The association of Pb and Cu to the CPNs was demonstrated by TOF-SIMS although it also indicated that not all the Pb and Cu contents are linked to the nanoparticles. By means of HR-TEM/EDS it was made out the filamentous shape and the size (50-150nm long and 20-40nm wide) of the CPNs together with their elemental composition (Ca, P and O). The CPNs were identified in treated soil samples together with signals of metals. The decrease on metal extractability detected is, in part, due to the association with CPNs but still more investigation is needed regarding mobility and availability of potentially hazardous elements in soils treated with nanoparticles.


Assuntos
Fosfatos de Cálcio/química , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Nanopartículas/química , Poluentes do Solo/química , Cobre/química , Chumbo/química , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...