Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(50): 59055-59065, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055639

RESUMO

Chemical vapor deposition (CVD) offers a large-area, scalable, and conformal growth of perovskite thin films without the use of solvents. Low-dimensional organic-inorganic halide perovskites, with alternating layers of organic spacer groups and inorganic perovskite layers, are promising for enhancing the stability of optoelectronic devices. Moreover, their multiple quantum-well structures provide a powerful platform for tuning excitonic physics. In this work, we show that the CVD process is conducive to the growth of 2D hybrid halide perovskite films. Using butylammonium (BA) and phenylethylammonium (PEA) cations, the growth parameters of BA2PbI4 and PEA2PbI4 and mixed halide perovskite films were first optimized. These films are characterized by well-defined grain boundaries and display characteristic absorption and emission features of the 2D quantum wells. X-ray diffraction (XRD) and a noninteger dimensionality model of the absorption spectrum provide insights into the orientation of the crystalline planes. Unlike BA2PbI4, temperature-dependent photoluminescence measurements from PEA2PbI4 show a single excitonic peak throughout the temperature range from 20 to 350 K, highlighting the lack of defect states. These results further corroborate the temperature-dependent synchrotron-based XRD results. Furthermore, the nonlinear optical properties of the CVD-grown perovskite films are investigated, and a high third harmonic generation efficiency is observed.

2.
Polymers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374983

RESUMO

This report focuses on the synthesis of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) as a donor material for organic solar cells (OSCs). The properties of the synthesized TTT-co-P3HT were compared with those of poly(3-hexylthiophene-2,5-diyl (P3HT). The structure of TTT-co-P3HT was studied using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FTIR). It was seen that TTT-co-P3HT possessed a broader electrochemical and optical band-gap as compared to P3HT. Cyclic voltammetry (CV) was used to determine lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy gaps of TTT-co-P3HT and P3HT were found to be 2.19 and 1.97 eV, respectively. Photoluminescence revealed that TTT-co-P3HT:PC71BM have insufficient electron/hole separation and charge transfer when compared to P3HT:PC71BM. All devices were fabricated outside a glovebox. Power conversion efficiency (PCE) of 1.15% was obtained for P3HT:PC71BM device and 0.14% was obtained for TTT-co-P3HT:PC71BM device. Further studies were done on fabricated OSCs during this work using electrochemical methods. The studies revealed that the presence of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on the surface of indium tin oxide (ITO) causes a reduction in cyclic voltammogram oxidation/reduction peak current and increases the charge transfer resistance in comparison with a bare ITO. We also examined the ITO/PEDOT:PSS electrode coated with TTT-co-P3HT:PC71BM, TTT-co-P3HT:PC71BM/ZnO, P3HT:PC71BM and P3HT:PC71BM/ZnO. The study revealed that PEDOT:PSS does not completely block electrons from active layer to reach the ITO electrode.

3.
RSC Adv ; 10(22): 13139-13148, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35492092

RESUMO

Planar perovskite solar cells (PPSCs) have received great attention in recent years due to their intriguing properties, which make them a good choice for photovoltaic applications. In this work, the effect of alkali and transition metal-doped TiO2 (cesium-doped TiO2 (Cs-TiO2) and yttrium-doped TiO2 (Y-TiO2)) compact layers on the optical, structural and the photovoltaic performance of the PPSCs have been investigated. The perovskite layer syntheses were carried out by depositing a lead iodide (PbI2) layer via spin-coating; converting PbI2 into methyl ammonium iodide (CH3NH3PbI3) by chemical vapor deposition (CVD) and spin-coating at 60 min and 60 s conversion times respectively. The as-deposited PPSCs were studied layer-by-layer using an X-ray diffractometer, scanning electron microscope, and UV-vis diffuse reflectance, transmittance and absorbance. The power conversion efficiency for stable processed perovskite solar cells were 3.61% and 12.89% for air and vacuum processed, respectively.

4.
Nanoscale ; 9(48): 19073-19085, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29120464

RESUMO

Although metal-catalysts are commonly used to create nanoscale materials at surfaces, little is quantitatively known or understood about the depth distribution profile of the catalyst during the growth process. Using X-ray reflectivity, we report the first quantitative investigation, with nanoscale resolution, of the Ag metal-catalyst depth distribution profile during metal-assisted chemical etch (MACE) growth of Si nanowire (SiNW) arrays on Si(100). Given the very low optical reflectivity of these nanowire arrays, specular reflection from these materials in the X-ray region is extremely challenging to measure because it probes interfaces on the nanoscale. Nevertheless, we demonstrate that with suitable investigation, X-ray specular reflection can be measured and utilized to obtain unique structural information about the composition profile of both Ag and Si. The measurements, which also include X-ray diffraction and complementary electron microscopy, reveal that the Ag nanoparticles distribute along the length of the nanowires upon etching with a Ag density that increases towards the etch front. The Ag nanoparticles coarsen with etch time, indicating a high mobility of Ag ions even though we also find that the Ag does not migrate from the SiNW region into the etch bath during etching. The Ag density gradient and the Ag mobility suggest the existence of a strong chemical force that attracts Ag towards the etch front. These results provide unique and important new insight into the growth process for creating SiNWs from wet chemical etching using metal-catalysts.

5.
Microsc Microanal ; 20(1): 4-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24423105

RESUMO

Filament condition during hot-wire chemical vapor deposition conditions of multi-walled carbon nanotubes is a major concern for a stable deposition process. We report on the novel application of electron backscatter diffraction to characterize the carburization of tungsten filaments. During the synthesis, the W-filaments transform to W2C and WC. W-carbide growth followed a parabolic behavior corresponding to the diffusion of C as the rate-determining step. The grain size of W, W2C, and WC increases with longer exposure time and increasing filament temperature. The grain size of the recrystallizing W-core and W2C phase grows from the perimeter inwardly and this phenomenon is enhanced at filament temperatures in excess of 1,400°C. Cracks appear at filament temperatures >1,600°C, accompanied by a reduction in the filament operational lifetime. The increase of the W2C and recrystallized W-core grain size from the perimeter inwardly is ascribed to a thermal gradient within the filament, which in turn influences the hardness measurements and crack formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...