Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Genes Dev ; 38(7-8): 322-335, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38724209

RESUMO

Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.


Assuntos
Íntrons , Splicing de RNA , Saccharomyces cerevisiae , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Íntrons/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Splicing de RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA/metabolismo , RNA/genética
2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585890

RESUMO

Rare, full length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envision and test a hypothesis for their formation using Saccharomyces cerevisiae, documenting full length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron-lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full length and processed circles. Post-splicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.

4.
RNA ; 30(2): 149-170, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071476

RESUMO

Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Íntrons/genética , Ribonucleoproteína Nuclear Pequena U2/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Splicing de RNA , Spliceossomos/genética , Aminoácidos/genética , Precursores de RNA/genética
5.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873484

RESUMO

Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.

8.
Proc Natl Acad Sci U S A ; 119(48): e2209766119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417430

RESUMO

There is massive variation in intron numbers across eukaryotic genomes, yet the major drivers of intron content during evolution remain elusive. Rapid intron loss and gain in some lineages contrast with long-term evolutionary stasis in others. Episodic intron gain could be explained by recently discovered specialized transposons called Introners, but so far Introners are only known from a handful of species. Here, we performed a systematic search across 3,325 eukaryotic genomes and identified 27,563 Introner-derived introns in 175 genomes (5.2%). Species with Introners span remarkable phylogenetic diversity, from animals to basal protists, representing lineages whose last common ancestor dates to over 1.7 billion years ago. Aquatic organisms were 6.5 times more likely to contain Introners than terrestrial organisms. Introners exhibit mechanistic diversity but most are consistent with DNA transposition, indicating that Introners have evolved convergently hundreds of times from nonautonomous transposable elements. Transposable elements and aquatic taxa are associated with high rates of horizontal gene transfer, suggesting that this combination of factors may explain the punctuated and biased diversity of species containing Introners. More generally, our data suggest that Introners may explain the episodic nature of intron gain across the eukaryotic tree of life. These results illuminate the major source of ongoing intron creation in eukaryotic genomes.


Assuntos
Elementos de DNA Transponíveis , Eucariotos , Animais , Íntrons/genética , Eucariotos/genética , Elementos de DNA Transponíveis/genética , Filogenia , Células Eucarióticas
9.
Elife ; 112022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384842

RESUMO

Nucleotides in RNA and DNA are chemically modified by numerous enzymes that alter their function. Eukaryotic ribosomal RNA (rRNA) is modified at more than 100 locations, particularly at highly conserved and functionally important nucleotides. During ribosome biogenesis, modifications are added at various stages of assembly. The existence of differently modified classes of ribosomes in normal cells is unknown because no method exists to simultaneously evaluate the modification status at all sites within a single rRNA molecule. Using a combination of yeast genetics and nanopore direct RNA sequencing, we developed a reliable method to track the modification status of single rRNA molecules at 37 sites in 18 S rRNA and 73 sites in 25 S rRNA. We use our method to characterize patterns of modification heterogeneity and identify concerted modification of nucleotides found near functional centers of the ribosome. Distinct, undermodified subpopulations of rRNAs accumulate upon loss of Dbp3 or Prp43 RNA helicases, suggesting overlapping roles in ribosome biogenesis. Modification profiles are surprisingly resistant to change in response to many genetic and acute environmental conditions that affect translation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture single-molecule RNA modification profiles provides new insights into the roles of nucleotide modifications in RNA function.


Assuntos
Nucleotídeos , Ribossomos , Metilação , Nucleotídeos/genética , Nucleotídeos/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo
10.
RNA ; 27(12): 1497-1511, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446532

RESUMO

Understanding transcriptomes requires documenting the structures, modifications, and abundances of RNAs as well as their proximity to other molecules. The methods that make this possible depend critically on enzymes (including mutant derivatives) that act on nucleic acids for capturing and sequencing RNA. We tested two 3' nucleotidyl transferases, Saccharomyces cerevisiae poly(A) polymerase and Schizosaccharomyces pombe Cid1, for the ability to add base and sugar modified rNTPs to free RNA 3' ends, eventually focusing on Cid1. Although unable to polymerize ΨTP or 1meΨTP, Cid1 can use 5meUTP and 4thioUTP. Surprisingly, Cid1 can use inosine triphosphate to add poly(I) to the 3' ends of a wide variety of RNA molecules. Most poly(A) mRNAs efficiently acquire a uniform tract of about 50 inosine residues from Cid1, whereas non-poly(A) RNAs acquire longer, more heterogeneous tails. Here we test these activities for use in direct RNA sequencing on nanopores, and find that Cid1-mediated poly(I)-tailing permits detection and quantification of both mRNAs and non-poly(A) RNAs simultaneously, as well as enabling the analysis of nascent RNAs associated with RNA polymerase II. Poly(I) produces a different current trace than poly(A), enabling recognition of native RNA 3' end sequence lost by in vitro poly(A) addition. Addition of poly(I) by Cid1 offers a broadly useful alternative to poly(A) capture for direct RNA sequencing on nanopores.


Assuntos
Nanoporos , Nucleotídeos/química , Nucleotidiltransferases/metabolismo , Polímeros/química , Polinucleotídeo Adenililtransferase/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Análise de Sequência de RNA/métodos , Nucleotidiltransferases/genética , Polinucleotídeo Adenililtransferase/genética , Proteínas de Schizosaccharomyces pombe/genética
12.
14.
Nat Methods ; 17(5): 481-494, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251396

RESUMO

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Assuntos
DNA/administração & dosagem , Eucariotos/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Biologia Marinha , Modelos Biológicos , Transformação Genética , Biodiversidade , Ecossistema , Meio Ambiente , Eucariotos/classificação , Especificidade da Espécie
15.
PLoS Genet ; 15(8): e1008249, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437148

RESUMO

Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.


Assuntos
Processamento Alternativo , Evolução Molecular , Genoma Fúngico , Íntrons/genética , Saccharomyces cerevisiae/genética , RNA não Traduzido/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo
16.
RNA ; 25(8): 1020-1037, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31110137

RESUMO

Stable recognition of the intron branchpoint (BP) by the U2 snRNP to form the pre-spliceosome is the first ATP-dependent step of splicing. Genetic and biochemical data from yeast indicate that Cus2 aids U2 snRNA folding into the stem IIa conformation prior to pre-spliceosome formation. Cus2 must then be removed by an ATP-dependent function of Prp5 before assembly can progress. However, the location from which Cus2 is displaced and the nature of its binding to the U2 snRNP are unknown. Here, we show that Cus2 contains a conserved UHM (U2AF homology motif) that binds Hsh155, the yeast homolog of human SF3b1, through a conserved ULM (U2AF ligand motif). Mutations in either motif block binding and allow pre-spliceosome formation without ATP. A 2.0 Å resolution structure of the Hsh155 ULM in complex with the UHM of Tat-SF1, the human homolog of Cus2, and complementary binding assays show that the interaction is highly similar between yeast and humans. Furthermore, we show that Tat-SF1 can replace Cus2 function by enforcing ATP dependence of pre-spliceosome formation in yeast extracts. Cus2 is removed before pre-spliceosome formation, and both Cus2 and its Hsh155 ULM binding site are absent from available cryo-EM structure models. However, our data are consistent with the apparent location of the disordered Hsh155 ULM between the U2 stem-loop IIa and the HEAT repeats of Hsh155 that interact with Prp5. We propose a model in which Prp5 uses ATP to remove Cus2 from Hsh155 such that extended base-pairing between U2 snRNA and the intron BP can occur.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , RNA Helicases DEAD-box/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Splicing de RNA , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Proc Natl Acad Sci U S A ; 115(5): 968-973, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339519

RESUMO

Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3'-untranslated regions (3'-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3'-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3'-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20-25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.


Assuntos
Evolução Molecular , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Elementos Nucleotídeos Curtos e Dispersos , Regiões 3' não Traduzidas , Sequência Rica em At , Animais , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
18.
Genes Dev ; 31(18): 1894-1909, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021242

RESUMO

Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer.


Assuntos
Processamento Alternativo , Mioblastos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Éxons , Expressão Gênica , Humanos , Camundongos , Morfolinos , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Motivo de Reconhecimento de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ratos
19.
Nat Struct Mol Biol ; 23(12): 1101-1110, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27775709

RESUMO

Host and virus interactions occurring at the post-transcriptional level are critical for infection but remain poorly understood. Here, we performed comprehensive transcriptome-wide analyses revealing that human cytomegalovirus (HCMV) infection results in widespread alternative splicing (AS), shortening of 3' untranslated regions (3' UTRs) and lengthening of poly(A)-tails in host gene transcripts. We found that the host RNA-binding protein CPEB1 was highly induced after infection, and ectopic expression of CPEB1 in noninfected cells recapitulated infection-related post-transcriptional changes. CPEB1 was also required for poly(A)-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reversed infection-related cytopathology and post-transcriptional changes, and decreased productive HCMV titers. Host RNA processing was also altered in herpes simplex virus-2 (HSV-2)-infected cells, thereby indicating that this phenomenon might be a common occurrence during herpesvirus infections. We anticipate that our work may serve as a starting point for therapeutic targeting of host RNA-binding proteins in herpesvirus infections.


Assuntos
Infecções por Citomegalovirus/genética , Citomegalovirus/genética , RNA Mensageiro/genética , RNA Viral/genética , Fatores de Transcrição/genética , Transcriptoma , Fatores de Poliadenilação e Clivagem de mRNA/genética , Regiões 3' não Traduzidas , Processamento Alternativo , Linhagem Celular , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Poliadenilação , Fatores de Transcrição/metabolismo , Regulação para Cima , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
20.
Neuron ; 92(4): 780-795, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27773581

RESUMO

HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. HnRNP A2/B1 loss results in alternative splicing (AS), including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs) demonstrate abnormal splicing changes, likely due to increased nuclear-insoluble hnRNP A2/B1. Mutant iPSC-MNs display decreased survival in long-term culture and exhibit hnRNP A2/B1 localization to cytoplasmic granules as well as exacerbated changes in gene expression and splicing upon cellular stress. Our findings provide a cellular resource and reveal RNA networks relevant to neurodegeneration, regulated by normal and mutant hnRNP A2/B1. VIDEO ABSTRACT.


Assuntos
Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/genética , Sobrevivência Celular/genética , Fibroblastos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Neurônios Motores/metabolismo , Transporte Proteico/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Estudos de Casos e Controles , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Imunofluorescência , Expressão Gênica , Perfilação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Mutação , Poliadenilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...