Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Chem ; 26: 101146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36159446

RESUMO

The recent COVID-19 outbreak has led health authorities to recommend at least the use of surgical masks, most preferably respirators (FFP2 or KN95), to prevent the spread of the virus. Non-woven fabrics have been chosen as the best option to manufacture the face masks, due to their filtration efficiency, low cost, and versatility. Modifying the mask filters with graphene has been of great interest due to its potential use as antibacterial and virucidal properties. Indeed, some companies have commercialized face masks in which graphene is coated and/or embedded. However, the Canadian sanitary authorities advised against using the Shandong Shengquan New Materials Co. graphene masks because of the possibility of pulmonary damage produced by graphene inhalation. Thus, we have analyzed the stability of the graphene filter of these masks and compared it with two other commercially available graphene mask filters, evaluating the morphological and spectroscopical change of the fibers, as well as the particles released during the endurance tests. Our work introduces the necessary tools and methodology to evaluate the potential degradation of face masks under extreme working conditions. These methods complement the present standard tests ensuring the security of the new filters based on composites or nanomaterials.

2.
Nat Commun ; 12(1): 347, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436620

RESUMO

When two-dimensional crystals are brought into close proximity, their interaction results in reconstruction of electronic spectrum and crystal structure. Such reconstruction strongly depends on the twist angle between the crystals, which has received growing attention due to interesting electronic and optical properties that arise in graphene and transitional metal dichalcogenides. Here we study two insulating crystals of hexagonal boron nitride stacked at small twist angle. Using electrostatic force microscopy, we observe ferroelectric-like domains arranged in triangular superlattices with a large surface potential. The observation is attributed to interfacial elastic deformations that result in out-of-plane dipoles formed by pairs of boron and nitrogen atoms belonging to opposite interfacial surfaces. This creates a bilayer-thick ferroelectric with oppositely polarized (BN and NB) dipoles in neighbouring domains, in agreement with our modeling. These findings open up possibilities for designing van der Waals heterostructures and offer an alternative probe to study moiré-superlattice electrostatic potentials.

3.
Science ; 360(6395): 1339-1342, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29930134

RESUMO

The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25353832

RESUMO

Viral fibers play a central role in many virus infection mechanisms since they recognize the corresponding host and establish a mechanical link to its surface. Specifically, bacteriophages have to anchor to bacteria through the fibers surrounding the tail before starting the viral DNA translocation into the host. The protein gene product (gp) 37 from bacteriophage T4 long tail fibers forms a fibrous parallel homotrimer located at the distal end of the long tail fibers. Biochemical data indicate that, at least, three of these fibers are required for initial host cell interaction but do not reveal why three and no other numbers are required. By using atomic force microscopy, we obtained high-resolution images of gp37 fibers adsorbed on a mica substrate in buffer conditions and probed their local mechanical properties. Our experiments of radial indentation at the nanometer scale provided a radial stiffness of ∼ 0.08 N/m and a breaking force of ∼ 120 pN. In addition, we performed finite element analysis and determined a Young's modulus of ∼ 20 MPa. From these mechanical parameters, we hypothesize that three viral fibers provide enough mechanical strength to prevent a T4 virus from being detached from the bacteria by the viral particle Brownian motion, delivering a biophysical justification for the previous biochemical data.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Proteínas Virais/metabolismo , Bacteriófago T4 , Módulo de Elasticidade , Análise de Elementos Finitos , Microscopia de Força Atômica , Modelos Moleculares , Proteínas Virais/química
5.
Ultramicroscopy ; 114: 56-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22356789

RESUMO

Control and minimization of tip-sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip-sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip-sample contact with high accuracy, thus minimizing the scanning forces (-100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode.


Assuntos
Adenoviridae/ultraestrutura , Bacteriófago T7/ultraestrutura , Microscopia de Força Atômica/métodos , Humanos
6.
Ultramicroscopy ; 109(6): 693-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19250752

RESUMO

A new variable external field magnetic force microscope is introduced here. The most outstanding feature of the system is its capability to perform stable images under a variable external magnetic field that can be applied both in in-plane and out-of-plane directions. The performances of the microscope are illustrated for four different suitable selected samples: highly oriented pyrolytic graphite, longitudinal magnetic storage media, FePt thin films with in-plane anisotropy and Ni nanowires with axial easy axis embedded on a ceramic matrix. The use of this variable-field magnetic force microscope as a magnetic writing-reading technique is also shown in this contribution.

7.
Rev Sci Instrum ; 79(12): 126106, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19123597

RESUMO

Acoustic dynamic force microscopy in liquids is a fundamental technique for the investigation of biological samples under physiological conditions. However, it shows an important drawback that consists of producing a myriad of resonance peaks, known as the forest of peaks, which hides the natural resonance frequency of the cantilever and prevents an optimum operation of the microscope. In this work, we propose a simple remedy for this problem, which consists on adding a small clay damper to the dither piezoelectric. The resulting frequency spectrum exhibits a single resonance peak that is comparable with the one obtained using magnetic excitation.


Assuntos
Acústica , Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Elasticidade , Eletricidade , Desenho de Equipamento , Magnetismo , Óptica e Fotônica , Propriedades de Superfície , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...