Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850283

RESUMO

To increase the applications of FDM (fusion deposition modeling) 3D printing in electronics, it is necessary to develop new filaments with good electrical properties and suitable processability. In this work, polymer composites filament-shaped with superior electrical performance based on polylactic acid (PLA) carbon nanotubes and lignin blends have been studied by combining solution mixing and melt blending. The results showed that composites achieve electrical percolation from 5 wt.% of nanotubes, with high electrical conductivity. Moreover, the introduction of a plasticizing additive, lignin, improved the printability of the material while increasing its electrical conductivity (from (1.5 ± 0.9)·10-7 S·cm-1 to (1.4 ± 0.9)·10-1 S cm-1 with 5 wt.% carbon nanotubes and 1 wt.% lignin) maintaining the mechanical properties of composite without additive. To validate lignin performance, its effect on PLA/MWCNT was compare with polyethylene glycol. PEG is a well-known commercial additive, and its use as dispersant and plasticizer in PLA/MWCNT composites has been proven in bibliography. PLA/MWCNT composites display easier processability by 3D printing and more adhesion between the printed layers with lignin than with PEG. In addition, the polyethylene glycol produces a plasticizing effect in the PLA matrix reducing the composite stiffness. Finally, an interactive electronic prototype was 3D printed to assess the printability of the new conducting filaments with 5 wt.% of MWCNT.

2.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236112

RESUMO

With increasing environmental awareness, lignin will play a key role in the transition from the traditional materials industry towards sustainability and Industry 4.0, boosting the development of functional eco-friendly composites for future electronic devices. In this work, a detailed study of the effect of unmodified lignin on 3D printed light-curable acrylic composites was performed up to 4 wt.%. Lignin ratios below 3 wt.% could be easily and reproducibly printed on a digital light processing (DLP) printer, maintaining the flexibility and thermal stability of the pristine resin. These low lignin contents lead to 3D printed composites with smoother surfaces, improved hardness (Shore A increase ~5%), and higher wettability (contact angles decrease ~19.5%). Finally, 1 wt.% lignin was added into 3D printed acrylic resins containing 5 wt.% p-toluensulfonic doped polyaniline (pTSA-PANI). The lignin/pTSA-PANI/acrylic composite showed a clear improvement in the dispersion of the conductive filler, reducing the average surface roughness (Ra) by 61% and increasing the electrical conductivity by an order of magnitude (up to 10-6 S cm-1) compared to lignin free PANI composites. Thus, incorporating organosolv lignin from wood industry wastes as raw material into 3D printed photocurable resins represents a simple, low-cost potential application for the design of novel high-valued, bio-based products.

3.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201892

RESUMO

There is need for developing novel conductive polymers for Digital Light Processing (DLP) 3D printing. In this work, photorheology, in combination with Jacobs working curves, efficaciously predict the printability of polyaniline (PANI)/acrylate formulations with different contents of PANI and photoinitiator. The adjustment of the layer thickness according to cure depth values (Cd) allows printing of most formulations, except those with the highest gel point times determined by photorheology. In the working conditions, the maximum amount of PANI embedded within the resin was ≃3 wt% with a conductivity of 10-5 S cm-1, three orders of magnitude higher than the pure resin. Higher PANI loadings hinder printing quality without improving electrical conductivity. The optimal photoinitiator concentration was found between 6 and 7 wt%. The mechanical properties of the acrylic matrix are maintained in the composites, confirming the viability of these simple, low-cost, conductive composites for applications in flexible electronic devices.

4.
J Radiol Prot ; 41(4)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33513588

RESUMO

A study of the radon activity concentration was carried out at the School of Computer Science of 'Universidade da Coruña' (UDC, Spain). For this purpose, building location, the type of soil and the construction materials were analysed. Subsequently, the radon activity concentration was determined using two different techniques: measurement in situ with an on-site ionization chamber detector (short term) and measurement with trace detectors (long term). Based on the results obtained, and according with the Spanish Law (Spanish Official Bulletin-Boletín Oficial del Estado, of 21 December 2011, IS-33 Instruction), corrective works were performed, consisting on the installation of a forced ventilation system underneath the extent of the suspended floor in order to mitigate the high radon specific activity in the building. Four months and 3 years after the works, new measurements were carried out in order to verify the effectiveness of the new ventilation system, obtaining a decrease of the radon gas values ranging between 87% and 90%, which confirmed long term effectivity.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Computadores , Habitação , Radônio/análise , Instituições Acadêmicas , Espanha
5.
Polymers (Basel) ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271895

RESUMO

In the last decade, Fused Deposition Modeling (FDM) has gained popularity for allowing the fabrication of pieces with complex shapes. The final quality of the pieces is strongly linked to the shape, size and surface finish of the strands deposited successively, which themselves depend on the printing parameters and extruded material properties. In this work, we present an experimental characterization of an extruded and deposited single strand of Poly-Lactic Acid (PLA), by means of high-speed visualization of the bead region between the substrate and the nozzle, where the molten polymer is still in liquid phase. A Computational Fluid Dynamics (CFD) model proposed in literature, and, based on isothermal and viscous flow assumptions, is validated with this data in terms of strand height and meniscus shape. The characteristics of the printed layer are also confronted to the measurements of the solidified strands by microscopy, with a good agreement. The focus on high printing speeds allows extending the conclusions of previous studies. Regarding the surface finish, the roughness patterns detected on the printed strands are correlated to the velocity fluctuations of the printing head. The CFD model does not capture those thickness variations, however, due to not accounting for solidification.

6.
J Agric Food Chem ; 61(48): 11848-57, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24188459

RESUMO

In this work, natural plasticizers-modified polypropylenes intended for food active packaging were developed. Sunflower oil, olive oil, and soy lecithin, without any known harmful effects or toxicity, were employed as natural plasticizers, also implementing the attractiveness of using synthetic plastics on active packaging developments. Their incorporation during the extrusion of polypropylene was tried as a means to obtain polymers with improved diffusion paths, allowing differences in antioxidant release rates for active packaging materials. Thermal and rheological characterization of the films showed that blending natural plasticizers do not significantly modify their thermal properties; however, small variations of viscoelastic properties were observed. Furthermore, the resulting release of tocopherol was highly dependent on the polymer formulation. Furthermore, it was clearly time-controlled by using those natural plasticizers, especially olive oil. Antioxidant activity results also showed that packaged foods are protected against oxidative degradation over time, resulting from the improved release of the antioxidants.


Assuntos
Antioxidantes/química , Embalagem de Alimentos/instrumentação , Lecitinas/química , Óleos de Plantas/química , Tocoferóis/química , Cinética , Azeite de Oliva , Oxirredução , Polipropilenos/química , Óleo de Girassol
7.
J Agric Food Chem ; 60(33): 8163-70, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22846036

RESUMO

The feasibility of novel controlled release systems for the delivery of active substances from films intended for food packaging was investigated. Because polyolefins are used highly for food-packaging applications, the reported high retention degree of antioxidants has limited their use for active packaging. Thus, in this study, PP films modified with different chain extenders have been developed to favor and control the release rates of the low molecular weight antioxidant tocopherol. The use of different chain extenders as polymer modifiers (PE-PEG M(w), 575; and PPG-PEG-PPG M(w), 2000) has caused significant changes in tocopherol-specific release properties. High-performance liquid chromatography coupled to PDA-FL and PDA-MS was used to test tocopherol and chain extender migration, respectively. The release of tocopherol from the prepared films with two chain extenders into two food simulants was studied. Different temperatures and storage times were also tested. Varying the structural features of the films with the incorporation of different levels of PPG-PEG-PPG, the release of tocopherol (food-packaging additive) into different ethanolic simulants could be clearly controlled. The effect of the temperature and storage time on the release of the antioxidant has been outstanding as their values increased. The migration of the chain extender, also tested, was well below the limits set by European legislation.


Assuntos
Antioxidantes/química , Aditivos Alimentares/análise , Embalagem de Alimentos/métodos , Polietilenoglicóis/química , Propilenoglicóis/química , Tocoferóis/química , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão/métodos , Etanol/metabolismo , Estudos de Viabilidade , Aditivos Alimentares/química , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...