Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0118021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734484

RESUMO

Disordered fiber networks provide structural support to a wide range of important materials, and the combination of spatial and dynamic complexity may produce large inhomogeneities in mechanical properties, an effect that is largely unexplored experimentally. In this work, we introduce Boundary Stress Microscopy to quantify the non-uniform surface stresses in sheared collagen gels. We find local stresses exceeding average stresses by an order of magnitude, with variations over length scales much larger than the network mesh size. The strain stiffening behavior observed over a wide range of network mesh sizes can be parameterized by a single characteristic strain and associated stress, which describes both the strain stiffening regime and network yielding. The characteristic stress is approximately proportional to network density, but the peak boundary stress at both the characteristic strain and at yielding are remarkably insensitive to concentration.


Assuntos
Colágeno Tipo I/química , Animais , Géis/química , Microscopia Confocal , Microscopia de Fluorescência , Ratos , Reologia , Estresse Mecânico
2.
Rev Sci Instrum ; 84(6): 063702, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23822347

RESUMO

We discuss the design and operation of a confocal rheometer, formed by integrating an Anton Paar MCR301 stress-controlled rheometer with a Leica SP5 laser scanning confocal microscope. Combining two commercial instruments results in a system which is straightforward to assemble that preserves the performance of each component with virtually no impact on the precision of either device. The instruments are configured so that the microscope can acquire time-resolved, three-dimensional volumes of a sample whose bulk viscoelastic properties are being measured simultaneously. We describe several aspects of the design and, to demonstrate the system's capabilities, present the results of a few common measurements in the study of soft materials.


Assuntos
Colágeno/química , Microscopia Confocal/instrumentação , Reologia/instrumentação , Desenho de Equipamento , Multimerização Proteica , Estrutura Quaternária de Proteína
3.
PLoS One ; 8(3): e58138, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536784

RESUMO

New insight into the biomechanics of cancer cell motility in 3D extracellular matrix (ECM) environments would significantly enhance our understanding of aggressive cancers and help identify new targets for intervention. While several methods for measuring the forces involved in cell-matrix interactions have been developed, previous to this study none have been able to measure forces in a fibrillar environment. We have developed a novel assay for simultaneously measuring cell mechanotransduction and motility in 3D fibrillar environments. The assay consists of a controlled-density fibrillar collagen gel atop a controlled-stiffness polyacrylamide (PAA) surface. Forces generated by living cells and their migration in the 3D collagen gel were measured with the 3D motion of tracer beads within the PAA layer. Here, this 3D fibril force assay is used to study the role of the invasion-associated protein kinase Src in mechanotransduction and motility. Src expression and activation are linked with proliferation, invasion, and metastasis, and have been shown to be required in 2D for invadopodia membranes to direct and mediate invasion. Breast cancer cell line MDA-MD-231 was stably transfected with GFP-tagged constitutively active Src or wild-type Src. In 3D fibrillar collagen matrices we found that, relative to wild-type Src, constitutively active Src: 1) increased the strength of cell-induced forces on the ECM, 2) did not significantly change migration speed, and 3) increased both the duration and the length, but not the number, of long membrane protrusions. Taken together, these results support the hypothesis that Src controls invasion by controlling the ability of the cell to form long lasting cellular protrusions to enable penetration through tissue barriers, in addition to its role in promoting invadopodia matrix-degrading activity.


Assuntos
Colágeno/metabolismo , Neoplasias/metabolismo , Quinases da Família src/metabolismo , Fenômenos Biomecânicos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Extensões da Superfície Celular/metabolismo , Ativação Enzimática , Matriz Extracelular/metabolismo , Feminino , Adesões Focais/metabolismo , Expressão Gênica , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Neoplasias/genética , Transporte Proteico , Transfecção , Quinases da Família src/genética
5.
Biophys J ; 99(8): L65-7, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20959077

RESUMO

We investigate the system size-dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent on the gel thickness. In addition, we demonstrate that the overall network failure is determined by the ratio of the gel thickness to the mesh size. These findings have broad implications for cell-matrix interactions, the interpretation of rheological tissue data, and the engineering of biomimetic scaffolds.


Assuntos
Colágeno Tipo I/química , Reologia , Animais , Módulo de Elasticidade , Dinâmica não Linear , Ratos , Resistência ao Cisalhamento , Estresse Mecânico
6.
Biophys J ; 91(11): 4241-52, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16950838

RESUMO

We develop an extension of fluorescence correlation spectroscopy (FCS) using a spinning disk confocal microscope. This approach can spatially map diffusion coefficients or flow velocities at up to approximately 10(5) independent locations simultaneously. Commercially available cameras with frame rates of 1000 Hz allow FCS measurements of systems with diffusion coefficients D~10(-7) cm(2)/s or smaller. This speed is adequate to measure small microspheres (200-nm diameter) diffusing in water, or hindered diffusion of macromolecules in complex media (e.g., tumors, cell nuclei, or the extracellular matrix). There have been a number of recent extensions to FCS based on laser scanning microscopy. Spinning disk confocal microscopy, however, has the potential for significantly higher speed at high spatial resolution. We show how to account for a pixel size effect encountered with spinning disk confocal FCS that is not present in standard or scanning FCS, and we introduce a new method to correct for photobleaching. Finally, we apply spinning disk confocal FCS to microspheres diffusing in Type I collagen, which show complex spatially varying diffusion caused by hydrodynamic and steric interactions with the collagen matrix.


Assuntos
Biofísica/métodos , Colágeno/química , Microscopia Confocal/métodos , Espectrometria de Fluorescência/métodos , Animais , Difusão , Luz , Espectroscopia de Ressonância Magnética , Microesferas , Modelos Estatísticos , Polietilenoglicóis/química , Ratos , Reprodutibilidade dos Testes , Software , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...