Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 450(7167): 281-4, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994096

RESUMO

Stratospheric ozone attenuates harmful ultraviolet radiation and protects the Earth's biosphere. Ozone is also of fundamental importance for the chemistry of the lowermost part of the atmosphere, the troposphere. At ground level, ozone is an important by-product of anthropogenic pollution, damaging forests and crops, and negatively affecting human health. Ozone is critical to the chemical and thermal balance of the troposphere because, via the formation of hydroxyl radicals, it controls the capacity of tropospheric air to oxidize and remove other pollutants. Moreover, ozone is an important greenhouse gas, particularly in the upper troposphere. Although photochemistry in the lower troposphere is the major source of tropospheric ozone, the stratosphere-troposphere transport of ozone is important to the overall climatology, budget and long-term trends of tropospheric ozone. Stratospheric intrusion events, however, are still poorly understood. Here we introduce the use of modern windprofiler radars to assist in such transport investigations. By hourly monitoring the radar-derived tropopause height in combination with a series of frequent ozonesonde balloon launches, we find numerous intrusions of ozone from the stratosphere into the troposphere in southeastern Canada. On some occasions, ozone is dispersed at altitudes of two to four kilometres, but on other occasions it reaches the ground, where it can dominate the ozone density variability. We observe rapid changes in radar tropopause height immediately preceding these intrusion events. Such changes therefore serve as a valuable diagnostic for the occurrence of ozone intrusion events. Our studies emphasize the impact that stratospheric ozone can have on tropospheric ozone, and show that windprofiler data can be used to infer the possibility of ozone intrusions, as well as better represent tropopause motions in association with stratosphere-troposphere transport.


Assuntos
Atmosfera/química , Ozônio/análise , Radar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Efeito Estufa , Ontário , Ozônio/química , Quebeque , Fatores de Tempo
2.
Appl Opt ; 39(15): 2393-400, 2000 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18345149

RESUMO

Sodium resonance-fluorescence lidar is an established technique for measuring atmospheric composition and dynamics in the mesopause region. A large-power-aperture product (6.6-W m(2)) sodium resonance-fluorescence lidar has been built as a part of the Purple Crow Lidar (PCL) at The University of Western Ontario. This sodium resonance-fluorescence lidar measures, with high optical efficiency, both sodium density and temperature profiles in the 83-100-km region. The sodium lidar operates simultaneously with a powerful Rayleigh- and Raman-scatter lidar (66 W m(2)). The PCL is thus capable of simultaneous measurement of temperature from the tropopause to the lower thermosphere. The sodium resonance-fluorescence lidar is shown to be able to measure temperature to an absolute precision of 1.5 K and a statistical accuracy of 1 K with a spatial-temporal resolution of 72 (km s) at an altitude of 92 km. We present results from three nights of measurements taken with the sodium lidar and compare these with coincident Rayleigh-scatter lidar measurements. These measurements show significant differences between the temperature profiles derived by the two techniques, which we attribute to variations in the ratio of molecular nitrogen to molecular oxygen that are not accounted for in the standard Rayleigh-scatter temperature analysis.

3.
Appl Opt ; 35(15): 2619-29, 1996 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21085407

RESUMO

The design, construction, and operation of a stratospheric Rayleigh lidar system is outlined. The lidar system was designed to operate as a Doppler lidar; however, for the first stage of the project it was set up to operate in a manner similar to a more conventional stratospheric Rayleigh lidar. This system includes a number of unique design features, including a high-pulse-repetition-frequency laser and the use of a single 1-m-diameter telescope for transmission of the laser pulse and reception of the backscattered light. An associated high-speed rotating shutter system switches the optical system from the transmission to the reception mode. The system was operated at Adelaide, Australia (35° S, 138° E). Scattering ratio and temperature profiles are calculated for data collected during the period from 10 March 1992 to 11 May 1993. The scattering ratio profiles clearly show the reduction in the scattering from the stratospheric aerosol layer. This is due to the removal of the aerosol injected by the eruption of Mt. Pinatubo. The measured relative density profiles show very good agreement with the Cospar international reference atmosphere model densities, as do the temperature profiles calculated from these.

4.
Appl Opt ; 34(30): 6925-36, 1995 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21060554

RESUMO

A lidar system has been built to measure atmospheric-density fluctuations and the temperature in the upper stratosphere, the mesosphere, and the lower thermosphere, measurements that are important for an understanding of climate and weather phenomena. This lidar system, the Purple Crow Lidar, uses two transmitter beams to obtain atmospheric returns resulting from Rayleigh scattering and sodium-resonance fluorescence. The Rayleigh-scatter transmitter is a Nd:YAG laser that generates 600 mJ/pulse at the second-harmonic frequency, with a 20-Hz pulse-repetition rate. The sodium-resonance-fluorescence transmitter is a Nd:YAG-pumped ring dye laser with a sufficiently narrow bandwidth to measure the line shape of the sodium D(2) line. The receiver is a 2.65-m-diameter liquid-mercury mirror. A container holding the mercury is spun at 10 rpm to produce a parabolic surface of high quality and reflectivity. Test results are presented which demonstrate that the mirror behaves like a conventional glass mirror of the same size. With this mirror, the lidar system's performance is within 10% of theoretical expectations. Furthermore, the liquid mirror has proved itself reliable over a wide range of environmental conditions. The use of such a large mirror presented several engineering challenges involving the passage of light through the system and detector linearity, both of which are critical for accurate retrieval of atmospheric temperatures. These issues and their associated uncertainties are documented in detail. It is shown that the Rayleigh-scatter lidar system can reliably and routinely measure atmospheric-density fluctuations and temperatures at high temporal and spatial resolutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...