Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(41): 18844-18860, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36193551

RESUMO

Chemotherapy is almost exclusively administered via the intravenous (IV) route, which has serious limitations (e.g., patient discomfort, long hospital stays, need for trained staff, high cost, catheter failures, infections). Therefore, the development of effective and less costly chemotherapy that is more comfortable for the patient would revolutionize cancer therapy. While subcutaneous (SC) administration has the potential to meet these criteria, it is extremely restrictive as it cannot be applied to most anticancer drugs, such as irritant or vesicant ones, for local toxicity reasons. Herein, we report a facile, general, and scalable approach for the SC administration of anticancer drugs through the design of well-defined hydrophilic polymer prodrugs. This was applied to the anticancer drug paclitaxel (Ptx) as a worst-case scenario due to its high hydrophobicity and vesicant properties (two factors promoting necrosis at the injection site). After a preliminary screening of well-established polymers used in nanomedicine, polyacrylamide (PAAm) was chosen as a hydrophilic polymer owing to its greater physicochemical, pharmacokinetic, and tumor accumulation properties. A small library of Ptx-based polymer prodrugs was designed by adjusting the nature of the linker (ester, diglycolate, and carbonate) and then evaluated in terms of rheological/viscosity properties in aqueous solutions, drug release kinetics in PBS and in murine plasma, cytotoxicity on two different cancer cell lines, acute local and systemic toxicity, pharmacokinetics and biodistribution, and finally their anticancer efficacy. We demonstrated that Ptx-PAAm polymer prodrugs could be safely injected subcutaneously without inducing local toxicity while outperforming Taxol, the commercial formulation of Ptx, thus opening the door to the safe transposition from IV to SC chemotherapy.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Camundongos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Polímeros/química , Irritantes , Distribuição Tecidual , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ésteres , Neoplasias/tratamento farmacológico
2.
JACS Au ; 2(4): 801-808, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557763

RESUMO

Facilitating access to deuterated and tritiated complex molecules is of paramount importance due to the fundamental role of isotopically labeled compounds in drug discovery and development. Deuterated analogues of drugs are extensively used as internal standards for quantification purposes or as active pharmaceutical ingredients, whereas tritiated drugs are essential for preclinical ADME studies. In this report, we describe the labeling of prevalent substructures in FDA-approved drugs such as azines, indoles, alkylamine moieties, or benzylic carbons by the in situ generation of Rh nanoparticles able to catalyze both C(sp2)-H and C(sp3)-H activation processes. In this easy-to-implement labeling process, Rh nanocatalysts are formed by decomposition of a commercially available rhodium dimer under a deuterium or tritium gas atmosphere (1 bar or less), using the substrate itself as a surface ligand to control the aggregation state of the resulting metallic clusters. It is noteworthy that the size of the nanoparticles observed is surprisingly independent of the substrate used and is homogeneous, as evidenced by transmission electron microscopy experiments. This method has been successfully applied to the one-step synthesis of (1) deuterated pharmaceuticals usable as internal standards for MS quantification and (2) tritiated drug analogues with very high molar activities (up to 113 Ci/mmol).

3.
J Med Chem ; 65(9): 6953-6968, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35500280

RESUMO

In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.


Assuntos
Imunoconjugados , Radioisótopos de Carbono
4.
Int J Pharm ; 609: 121076, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34481886

RESUMO

A simple approach to achieve a lipoprotein (LP)-mediated drug delivery is to trigger the spontaneous drug insertion into endogenous lipoproteins in the bloodstream, by means of its chemical modification. Nanoparticles (NPs) made of the squalene-gemcitabine (SQGem) conjugate were found to have a high affinity for plasma lipoproteins while free gemcitabine did not, suggesting a key role of the lipid moiety in this event. Whether the drug conjugation to cholesterol, one of the major lipoprotein-transported lipids, could also promote an analogous interaction was a matter of question. NPs made of the cholesterol-gemcitabine conjugate (CholGem) have been herein thoroughly investigated for their blood distribution profile both in vitro and in vivo. Unexpectedly, contrarily to SQGem, no trace of the CholGem prodrug could be found in the lipoprotein fractions, nor was it interacting with albumin. The investigation of isolated NPs and NPs/LPs physical mixtures provided a further insight into the lack of interaction of CholGem NPs with LPs. Although essential for allowing the self-assembly of the prodrug into nanoparticles, the lipid moiety may not be sufficient to elicit interaction of the conjugated drug with plasma lipoproteins but the whole NP physicochemical features must be carefully considered.


Assuntos
Desoxicitidina , Sistemas de Liberação de Medicamentos , Nanopartículas , Pró-Fármacos , Animais , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Humanos , Lipídeos , Masculino , Ratos Sprague-Dawley , Gencitabina
5.
Radiat Res ; 195(3): 265-274, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400793

RESUMO

Tritium has been receiving worldwide attention, particularly because of its production and use in existing fission reactors and future nuclear fusion technologies, leading to an increased risk of release in the environment. Linking human health effects to low-dose tritium exposures presents a challenge for many reasons. Among these: biological effects strongly depend on the speciation of tritiated products and exposure pathway; large dosimetric uncertainties may exist; measurements using in vitro cell cultures generally lack a description of effects at the tissue level, while large-scale animal studies might be ethically questionable and too highly demanding in terms of resources. In this context, three-dimensional models of the human airway epithelium are a powerful tool to investigate potential toxicity induced upon inhalation of radioactive products in controlled physiological conditions. In this study we exposed such a model to tritiated water (HTO) for 24 h, with a range of activity levels (up to ∼33 kBq µl-1 cm-2). After the exposures, we measured cell viability, integrity of epithelial layer and pro-inflammatory response at different post-exposure time-points. We also quantified tritium absorption and performed dosimetric estimates considering HTO passage through the epithelial layer, leading to reconstructed upper limits for the dose to the tissue of less than 50 cGy cumulative dose for the highest activity. Upon exposure to the highest activity, cell viability was not decreased; however, we observed a small effect on epithelial integrity and an inflammatory response persisting after seven days. These results represent a reference condition and will guide future experiments using human airway epithelium to investigate the effects of other peculiar tritiated products.


Assuntos
Epitélio/efeitos da radiação , Pulmão/efeitos da radiação , Trítio/efeitos adversos , Água/química , Animais , Epitélio/patologia , Humanos , Pulmão/patologia , Camundongos , Radiometria
6.
Nanomaterials (Basel) ; 10(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204428

RESUMO

Nanodiamonds of detonation origin are promising delivery agents of anti-cancer therapeutic compounds in a whole organism like mouse, owing to their versatile surface chemistry and ultra-small 5 nm average primary size compatible with natural elimination routes. However, to date, little is known about tissue distribution, elimination pathways and efficacy of nanodiamonds-based therapy in mice. In this report, we studied the capacity of cationic hydrogenated detonation nanodiamonds to carry active small interfering RNA (siRNA) in a mice model of Ewing sarcoma, a bone cancer of young adults due in the vast majority to the EWS-FLI1 junction oncogene. Replacing hydrogen gas by its radioactive analog tritium gas led to the formation of labeled nanodiamonds and allowed us to investigate their distribution throughout mouse organs and their excretion in urine and feces. We also demonstrated that siRNA directed against EWS-FLI1 inhibited this oncogene expression in tumor xenografted on mice. This work is a significant step to establish cationic hydrogenated detonation nanodiamond as an effective agent for in vivo delivery of active siRNA.

7.
Angew Chem Int Ed Engl ; 59(47): 21114-21120, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33463019

RESUMO

Radiolabelling is fundamental in drug discovery and development as it is mandatory for preclinical ADME studies and late-stage human clinical trials. Herein, a general, effective, and easy to implement method for the multiple site incorporation of deuterium and tritium atoms using the commercially available and air-stable iridium precatalyst [Ir(COD)(OMe)]2 is described. A large scope of pharmaceutically relevant substructures can be labelled using this method including pyridine, pyrazine, indole, carbazole, aniline, oxa-/thia-zoles, thiophene, but also electron-rich phenyl groups. The high functional group tolerance of the reaction is highlighted by the labelling of a wide range of complex pharmaceuticals, containing notably halogen or sulfur atoms and nitrile groups. The multiple site hydrogen isotope incorporation has been explained by the in situ formation of complementary catalytically active species: monometallic iridium complexes and iridium nanoparticles.


Assuntos
Deutério/química , Compostos Heterocíclicos/síntese química , Marcação por Isótopo/métodos , Trítio/química , Catálise , Complexos de Coordenação/química , Irídio/química
8.
Chemistry ; 26(22): 4988-4996, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31841248

RESUMO

Ruthenium nanocatalysis can provide effective deuteration and tritiation of oxazole, imidazole, triazole and carbazole substructures in complex molecules using D2 or T2 gas as isotopic sources. Depending on the substructure considered, this approach does not only represent a significant step forward in practice, with notably higher isotope uptakes, a broader substrate scope and a higher solvent applicability compared to existing procedures, but also the unique way to label important heterocycles using hydrogen isotope exchange. In terms of applications, the high incorporation of deuterium atoms, allows the synthesis of internal standards for LC-MS quantification. Moreover, the efficacy of the catalyst permits, even under subatmospheric pressure of T2 gas, the preparation of complex radiolabeled drugs owning high molar activities. From a fundamental point of view, a detailed DFT-based mechanistic study identifying undisclosed key intermediates, allowed a deeper understanding of C-H (and N-H) activation processes occurring at the surface of metallic nanoclusters.


Assuntos
Deutério/química , Compostos Heterocíclicos/química , Hidrogênio/química , Imidazóis/química , Rutênio/química , Catálise
9.
Nanomaterials (Basel) ; 9(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480309

RESUMO

Tungsten was chosen as a wall component to interact with the plasma generated by the International Thermonuclear Experimental fusion Reactor (ITER). Nevertheless, during plasma operation tritiated tungsten nanoparticles (W-NPs) will be formed and potentially released into the environment following a Loss-Of-Vacuum-Accident, causing occupational or accidental exposure. We therefore investigated, in the bronchial human-derived BEAS-2B cell line, the cytotoxic and epigenotoxic effects of two types of ITER-like W-NPs (plasma sputtering or laser ablation), in their pristine, hydrogenated, and tritiated forms. Long exposures (24 h) induced significant cytotoxicity, especially for the hydrogenated ones. Plasma W-NPs impaired cytostasis more severely than the laser ones and both types and forms of W-NPs induced significant micronuclei formation, as shown by cytokinesis-block micronucleus assay. Single DNA strand breaks, potentially triggered by oxidative stress, occurred upon exposure to W-NPs and independently of their form, as observed by alkaline comet assay. After 24 h it was shown that more than 50% of W was dissolved via oxidative dissolution. Overall, our results indicate that W-NPs can affect the in vitro viability of BEAS-2B cells and induce epigenotoxic alterations. We could not observe significant differences between plasma and laser W-NPs so their toxicity might not be triggered by the synthesis method.

10.
Nanoscale ; 11(16): 8027-8036, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30964938

RESUMO

We report here on a robust and easy-to-implement method for the labelling of detonation nanodiamonds (DND) with hydrogen isotopes (deuterium and tritium), using thermal annealing performed in a closed system. With this method, we have synthesized and fully characterized (FTIR, Raman, DLS, 3H/2H/1H and 13C MAS NMR) deuterium-treated and tritium-treated DND and demonstrated the usefulness of isotope incorporation in investigating the surface chemistry of such nanomaterials. For instance, surface treatment with deuterium coupled to FTIR spectroscopy allowed us to discriminate the origin of C-H terminations at the DND surface after the hydrogenation process. As a complementary, tritium appeared very useful for quantification purposes, while 1,2,3H NMR confirmed the nature of the C-1,2,3H bonds created. This isotopic study provides new insights into the characteristics of hydrogen-treated DND.

11.
Angew Chem Int Ed Engl ; 58(15): 4891-4895, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768844

RESUMO

A general approach for the efficient hydrogen-isotope exchange of nucleobase derivatives is described. Catalyzed by ruthenium nanoparticles, using mild reaction conditions, and involving either D2 or T2 as isotopic sources, this reaction possesses a wide substrate scope and a high solvent tolerability. This novel method facilitates the access to essential diagnostic tools in drug discovery and development: tritiated pharmaceuticals with high specific activities and deuterated oligonucleotides suitable for use as internal standards during LC-MS quantification.


Assuntos
Medição da Troca de Deutério , Deutério/química , Hidrogênio/química , Oligonucleotídeos/química , Preparações Farmacêuticas/química , Cromatografia Líquida , Espectrometria de Massas
12.
J Pharmacol Exp Ther ; 369(1): 144-151, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670479

RESUMO

Adenosine receptors (ARs) represent key drug targets in many human pathologies, including cardiovascular, neurologic, and inflammatory diseases. To overcome the very rapid metabolization of adenosine, metabolically stable AR agonists and antagonists were developed. However, few of these molecules have reached the market due to efficacy and safety issues. Conjugation of adenosine to squalene to form squalene-adenosine (SQAd) nanoparticles (NPs) dramatically improved the pharmacological efficacy of adenosine, especially for neuroprotection in stroke and spinal cord injury. However, the mechanism by which SQAd NPs displayed therapeutic activity remained totally unknown. In the present study, two hypotheses were discussed: 1) SQAd bioconjugates, which constitute the NP building blocks, act directly as AR ligands; or 2) adenosine, once released from intracellularly processed SQAd NPs, interacts with these receptors. The first hypothesis was rejected, using radioligand displacement assays, as no binding to human ARs was detected, up to 100 µM SQAd, in the presence of plasma. Hence, the second hypothesis was examined. SQAd NPs uptake by HepG2 cells, which was followed using radioactive and fluorescence tagging, was found to be independent of equilibrative nucleoside transporters but rather mediated by low-density lipoprotein receptors. Interestingly, it was observed that after cell internalization, SQAd NPs operated as an intracellular reservoir of adenosine, followed by a sustained release of the nucleoside in the extracellular medium. This resulted in a final paracrine-like activation of the AR pathway, evidenced by fluctuations of the second messenger cAMP. This deeper understanding of the SQAd NPs mechanism of action provides a strong rational for extending the pharmaceutical use of this nanoformulation.


Assuntos
Adenosina/química , Adenosina/metabolismo , Nanopartículas/química , Pró-Fármacos/metabolismo , Receptores Purinérgicos P1/metabolismo , Esqualeno/química , Esqualeno/metabolismo , Animais , Transporte Biológico , Células CHO , Cricetulus , Espaço Extracelular/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Ligantes
13.
Chem Commun (Camb) ; 54(24): 2986-2989, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29505052

RESUMO

We present here the first example of C(sp3)-H activation directed by a sulfur atom. Based on this transformation catalyzed by Ru/C, we have developed a hydrogen isotope exchange reaction for the deuterium and tritium labelling of thioether substructures in complex molecules.

14.
J Colloid Interface Sci ; 512: 308-317, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29078182

RESUMO

Multimodal probes, which can be simultaneously visualized by multiple imaging modalities, enable the cellular uptake, intracellular fate, biodistribution and elimination to be tracked in organisms. In this study, we report the synthesis of crystalline WO3 and CaWO4 doped with Eu3+ or Tb3+ nanoparticles (size range of 10-160 nm) coated with polysaccharides, and these nanoparticles constitute a versatile easy-to-construct modular toolbox for multimodal imaging. The particles adsorb significant amounts of polysaccharides from the solution, providing biocompatibility and may serve as a platform for labeling. For WO3, the sorption is reversible. However, on CaWO4, stable coating is formed. CaWO4/Tb3+ coated with chemisorbed dextrin, mannan, guar gum and sodium alginate successfully underwent endocytosis with HepG2 cells and was visualized using confocal microscopy.


Assuntos
Materiais Biocompatíveis/química , Endocitose/fisiologia , Luminescência , Nanopartículas/administração & dosagem , Polissacarídeos/química , Tungstênio/química , Células Hep G2 , Humanos , Microscopia Confocal , Nanopartículas/química , Nanopartículas/efeitos da radiação , Térbio/química
15.
Mol Ther ; 25(7): 1596-1605, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28606375

RESUMO

Selective delivery of anticancer drugs to rapidly growing cancer cells can be achieved by taking advantage of their high receptor-mediated uptake of low-density lipoproteins (LDLs). Indeed, we have recently discovered that nanoparticles made of the squalene derivative of the anticancer agent gemcitabine (SQGem) strongly interacted with the LDLs in the human blood. In the present study, we showed both in vitro and in vivo that such interaction led to the preferential accumulation of SQGem in cancer cells (MDA-MB-231) with high LDL receptor expression. As a result, an improved pharmacological activity has been observed in MDA-MB-231 tumor-bearing mice, an experimental model with a low sensitivity to gemcitabine. Accordingly, we proved that the use of squalene moieties not only induced the gemcitabine insertion into lipoproteins, but that it could also be exploited to indirectly target cancer cells in vivo.


Assuntos
Adenocarcinoma/terapia , Neoplasias da Mama/terapia , Regulação Neoplásica da Expressão Gênica , Lipoproteínas LDL/metabolismo , Nanopartículas/administração & dosagem , Receptores de LDL/genética , Esqualeno/química , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Portadores de Fármacos , Feminino , Humanos , Lipoproteínas LDL/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Nanopartículas/química , Receptores de LDL/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
16.
J Control Release ; 212: 50-8, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26087468

RESUMO

Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury.


Assuntos
Adenosina , Nanopartículas , Pró-Fármacos , Esqualeno , Adenosina/administração & dosagem , Adenosina/química , Adenosina/farmacocinética , Animais , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Esqualeno/administração & dosagem , Esqualeno/química , Esqualeno/farmacocinética , Distribuição Tecidual , Trítio
18.
J Labelled Comp Radiopharm ; 58(1): 1-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25616229

RESUMO

DPA-714 (N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide) is a recently discovered fluorinated ligand of the translocator protein 18 kDa (TSPO). Labelled with the short-lived positron emitter fluorine-18, this structure is today the radioligand of reference for in vivo imaging of microglia activation and neuroinflammatory processes with positron emission tomography. In the present work, an isotopically tritium-labelled version was developed ([(3) H]DPA-714), in order to access high resolution in vitro and ex vivo microscopic autoradiography studies, repeated and long-lasting receptor binding studies and in vivo pharmacokinetic determination at late time points. Briefly, DPA-714 as reference, and its 3,5-dibrominated derivative as precursor for labelling, were both prepared from DPA-713 in nonoptimized 32% (two steps) and 10% (three steps) yields, respectively. Reductive debromination using deuterium gas and Pd/C as catalyst in methanol, performed at the micromolar scale, confirmed the regioselective introduction of two deuterium atoms at the meta positions of the phenyl ring. Tritiodebromination was analogously performed using no-carrier tritium gas. HPLC purification provided >96% radiochemically pure [(3) H]DPA-714 (7 GBq) with a 2.1 TBq/mmol specific radioactivity. Interestingly, additional hydrogen-for-tritium exchanges were also observed at the 5-methyl and 7-methyl positions of the pyrazolo[1,5-a]pyrimidine, opening novel perspectives in the labelling of compounds featuring this heterocyclic core.


Assuntos
Pirazóis/síntese química , Pirimidinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Trítio/química
19.
Nat Nanotechnol ; 9(12): 1054-1062, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25420034

RESUMO

There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

20.
Chem Commun (Camb) ; 50(22): 2916-8, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24492594

RESUMO

For the first time, the radioactive labeling of detonation nanodiamonds was efficiently achieved using a tritium microwave plasma. According to our measurements, the total radioactivity reaches 9120 ± 120 µCi mg(-1), with 93% of (3)H atoms tightly bonded to the surface and up to 7% embedded into the diamond core. Such (3)H doping will ensure highly stable radiolabeled nanodiamonds, on which surface functionalization is still allowed. This breakthrough opens the way to biodistribution and pharmacokinetics studies of nanodiamonds, while this approach can be scalable to easily treat bulk quantities of nanodiamonds at low cost.


Assuntos
Nanodiamantes/química , Trítio/química , Marcação por Isótopo , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...