Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 53(4): 205-224, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703210

RESUMO

Unicellular organisms such as yeast can survive in very different environments, thanks to a polysaccharide wall that reinforces their extracellular membrane. This wall is not a static structure, as it is expected to be dynamically remodeled according to growth stage, division cycle, environmental osmotic pressure and ageing. It is therefore of great interest to study the mechanics of these organisms, but they are more difficult to study than other mammalian cells, in particular because of their small size (radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we perform compression experiments on single yeast cells (S. cerevisiae) on poly-L-lysine-coated grooved glass plates, in the limit of small deformation using an atomic force microscope (AFM). Thanks to a careful decomposition of force-displacement curves, we extract local scaling exponents that highlight the non-stationary characteristic of the yeast behavior upon compression. Our multi-scale nonlinear analysis of the AFM force-displacement curves provides evidence for non-stationary scaling laws. We propose to model these phenomena based on a two-component elastic system, where each layer follows a different scaling law..


Assuntos
Elasticidade , Microscopia de Força Atômica , Modelos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Polilisina/química , Força Compressiva
2.
Cell Mol Life Sci ; 81(1): 7, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092984

RESUMO

Cancer cells are exposed to major compressive and shearing forces during invasion and metastasis, leading to extensive plasma membrane damage. To survive this mechanical stress, they need to repair membrane injury efficiently. Targeting the membrane repair machinery is thus potentially a new way to prevent invasion and metastasis. We show here that annexin-A2 (ANXA2) is required for membrane repair in invasive breast and pancreatic cancer cells. Mechanistically, we show by fluorescence and electron microscopy that cells fail to reseal shear-stress damaged membrane when ANXA2 is silenced or the protein is inhibited with neutralizing antibody. Silencing of ANXA2 has no effect on proliferation in vitro, and may even accelerate migration in wound healing assays, but reduces tumor cell dissemination in both mice and zebrafish. We expect that inhibiting membrane repair will be particularly effective in aggressive, poor prognosis tumors because they rely on the membrane repair machinery to survive membrane damage during tumor invasion and metastasis. This could be achieved either with anti-ANXA2 antibodies, which have been shown to inhibit metastasis of breast and pancreatic cancer cells, or with small molecule drugs.


Assuntos
Proteínas de Membrana , Neoplasias Pancreáticas , Animais , Camundongos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/patologia , Peixe-Zebra
3.
Lab Chip ; 20(21): 4016-4030, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32975276

RESUMO

Emerging evidence suggests the importance of mechanical stimuli in normal and pathological situations for the control of many critical cellular functions. While the effect of matrix stiffness has been and is still extensively studied, few studies have focused on the role of mechanical stresses. The main limitation of such analyses is the lack of standard in vitro assays enabling extended mechanical stimulation compatible with dynamic biological and biophysical cell characterization. We have developed an agarose-based microsystem, the soft cell confiner, which enables the precise control of confinement for single or mixed cell populations. The rigidity of the confiner matches physiological conditions and its porosity enables passive medium renewal. It is compatible with time-lapse microscopy, in situ immunostaining, and standard molecular analyses, and can be used with both adherent and non-adherent cell lines. Cell proliferation of various cell lines (hematopoietic cells, MCF10A epithelial breast cells and HS27A stromal cells) was followed for several days up to confluence using video-microscopy and further documented by Western blot and immunostaining. Interestingly, even though the nuclear projected area was much larger upon confinement, with many highly deformed nuclei (non-circular shape), cell viability, assessed by live and dead cell staining, was unaffected for up to 8 days in the confiner. However, there was a decrease in cell proliferation upon confinement for all cell lines tested. The soft cell confiner is thus a valuable tool to decipher the effects of long-term confinement and deformation on the biology of cell populations. This tool will be instrumental in deciphering the impact of nuclear and cytoskeletal mechanosensitivity in normal and pathological conditions involving highly confined situations, such as those reported upon aging with fibrosis or during cancer.


Assuntos
Núcleo Celular , Citoesqueleto , Proliferação de Células , Matriz Extracelular , Sefarose
4.
Opt Lett ; 42(13): 2523-2526, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957275

RESUMO

We report on a high-resolution metal-clad waveguide scanning microscopic method with a diffraction-limited resolution. This microscope can be operated in both TM and TE waveguide modes with radially and azimuthally polarized beams, respectively, and allows both refractive index and topography of dielectric objects to be evaluated at high resolution and sensitivity. We emphasize the performance of this microscopic method from calibrated 3D polymer microstructures with rectangular, disk, and ring shapes.

5.
Biol Cybern ; 111(2): 129-148, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28233067

RESUMO

Alteration of [Formula: see text] channel functions (channelopathies) has been encountered in various hereditary muscle diseases. [Formula: see text] channel mutations lead to aberrant excitability in skeletal muscle myotonia and paralysis. In general, these mutations disable inactivation of the [Formula: see text] channel, producing either repetitive action potential firing (myotonia) or electrical dormancy (flaccid paralysis) in skeletal muscles. These "sick-excitable" cell conditions were shown to correlate with a mechanical stretch-driven left shift of the conductance factors of the two gating mechanisms of a fraction of [Formula: see text] channels, which make them firing at inappropriate hyperpolarised (left-shifted) voltages. Here we elaborate on a variant of the Hodgkin-Huxley model that includes a stretch elasticity energy component in the activation and inactivation gate kinetic rates. We show that this model reproduces fairly well sick-excitable cell behaviour and can be used to predict the parameter domains where aberrant excitability or paralysis may occur. By allowing us to separate the incidences of activation and inactivation gate impairments in [Formula: see text] channel excitability, this model could be a strong asset for diagnosing the origin of excitable cell disorders.


Assuntos
Músculo Esquelético/metabolismo , Canais de Sódio , Estresse Mecânico , Animais , Humanos , Ativação do Canal Iônico , Modelos Biológicos , Canais de Sódio/fisiologia
6.
Phys Biol ; 13(3): 03LT01, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27254599

RESUMO

Cancer cell transformation is often accompanied by a modification of their viscoelastic properties. When capturing the stress-to-strain response of primary chronic myelogenous leukemia (CML) cells, from two data sets of CD34+ hematopoietic cells isolated from healthy and leukemic bone marrows, we show that the mean shear relaxation modulus increases upon cancer transformation. This stiffening of the cells comes along with local rupture events, detected as reinforced sharp local maxima of this modulus, suggesting that these cancer cells respond to a local mechanical stress by a cascade of local brittle failure events.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Resistência ao Cisalhamento , Estresse Mecânico , Elasticidade , Humanos , Fatores de Tempo
7.
Sci Rep ; 6: 22469, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935043

RESUMO

We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin's fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.


Assuntos
Cromatina/metabolismo , Replicação do DNA/fisiologia , Origem de Replicação/fisiologia , Linhagem Celular , Cromatina/genética , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Opt Express ; 21(6): 7456-77, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546129

RESUMO

Surface plasmon resonance is conventionally conducted in the visible range and, during the past decades, it has proved its efficiency in probing molecular scale interactions. Here we elaborate on the first implementation of a high resolution surface plasmon microscope that operates at near infrared (IR) wavelength for the specific purpose of living matter imaging. We analyze the characteristic angular and spatial frequencies of plasmon resonance in visible and near IR lights and how these combined quantities contribute to the V(Z) response of a scanning surface plasmon microscope (SSPM). Using a space-frequency wavelet decomposition, we show that the V(Z) response of the SSPM for red (632.8 nm) and near IR (1550 nm) lights includes the frequential response of plasmon resonance together with additional parasitic frequencies induced by the objective pupil. Because the objective lens pupil profile is often unknown, this space-frequency decomposition turns out to be very useful to decipher the characteristic frequencies of the experimental V(Z) curves. Comparing the visible and near IR light responses of the SSPM, we show that our objective lens, primarily designed for visible light microscopy, is still operating very efficiently in near IR light. Actually, despite their loss in resolution, the SSPM images obtained with near IR light remain contrasted for a wider range of defocus values from negative to positive Z values. We illustrate our theoretical modeling with a preliminary experimental application to blood cell imaging.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Lentes , Microscopia/instrumentação , Microscopia/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Análise de Ondaletas , Desenho de Equipamento , Análise de Falha de Equipamento , Interpretação de Imagem Assistida por Computador/instrumentação , Raios Infravermelhos
9.
Opt Express ; 19(7): 6571-86, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451685

RESUMO

Imaging cellular internal structure at nanometer scale axial resolution with non invasive microscopy techniques has been a major technical challenge since the nineties. We propose here a complement to fluorescence based microscopies with no need of staining the biological samples, based on a Scanning Surface Plasmon Microscope (SSPM). We describe the advantages of this microscope, namely the possibility of both amplitude and phase imaging and, due to evanescent field enhancement by the surface plasmon resonance, a very high resolution in Z scanning (Z being the axis normal to the sample). We show for fibroblast cells (IMR90) that SSPM offers an enhanced detection of index gradient regions, and we conclude it is very well suited to discriminate regions of variable density in biological media such as cell compartments, nucleus, nucleoli and membranes.


Assuntos
Rastreamento de Células/métodos , Fibroblastos/citologia , Aumento da Imagem/instrumentação , Microscopia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Sensibilidade e Especificidade
10.
Eur Phys J E Soft Matter ; 16(3): 259-66, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15660186

RESUMO

We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.


Assuntos
Eletroquímica/métodos , Microfluídica/métodos , Soluções/química , Soluções/efeitos da radiação , Espectrometria de Fluorescência/métodos , Campos Eletromagnéticos , Técnicas de Sonda Molecular
11.
Phys Rev Lett ; 93(10): 108101, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15447453

RESUMO

We explore large-scale nucleotide compositional fluctuations of the human genome using multiresolution techniques. Analysis of the GC content and of the AT and GC skews reveals the existence of rhythms with two main periods of 110+/-20 kb and 400+/-50 kb that enlighten a remarkable cooperative gene organization. We show that the observed nonlinear oscillations are likely to display all the characteristic features of chaotic strange attractors which suggests a very attractive deterministic picture: gene orientation and location, in relation with the structure and dynamics of chromatin, might be governed by a low-dimensional nonlinear dynamical system.


Assuntos
Relógios Biológicos , Mapeamento Cromossômico/métodos , DNA/química , DNA/genética , Genoma Humano , Modelos Genéticos , Análise de Sequência de DNA/métodos , Sequência Rica em At , Composição de Bases/genética , Sequência de Bases , Simulação por Computador , Humanos , Dados de Sequência Molecular , Dinâmica não Linear , Periodicidade
12.
Eur Phys J E Soft Matter ; 9(4): 387-99, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15010909

RESUMO

We report a theoretical and experimental study of the hydrodynamic flow induced by an a.c. electric field in the vicinity of a dielectric stripe deposited on a conducting plate. In the theoretical part, we model the stripe as a small change of the surface capacitance of the plate, and a perturbative approach is used to perform the calculations. This approach predicts an outwards rectified electro-osmotic slip along the surface that generates two steady counter-rotating rolls, the size of which decreases with the frequency. In the experimental section, we use tracers to determine the structure of the flow and investigate its dependence on the frequency and the amplitude of the applied voltage. The structure and amplitude of the observed flow compares satisfactorily with the theoretical analysis. This could guide the design of surface-controlled flows and help to understand the collective behavior of colloids near electrodes.

13.
Phys Rev Lett ; 84(14): 3129-32, 2000 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-11019029

RESUMO

Dense branching morphologies (DBM) obtained in thin gap electrodeposition cells are characterized by a dense array of branches behind a flat advancing envelope. In this Letter, we show the existence in DBM of a new (porous) phase, qualitatively different from a (compact) metal deposit. The local porosity inside the branches is found to be much more robust than geometric characteristics such as the width or the distance between branches. This fact seems to be unreported in previous modeling of DBM. A mean-field model is proposed that displays overall features observed in the experiments, such as concentration profiles, front velocity, and branched internal structure.

14.
Artigo em Inglês | MEDLINE | ID: mdl-11031598

RESUMO

We report experimental investigations of the structure of dense patterns obtained during electrochemical deposition of copper in thin cells. The deposit correlation function reveals the periodic structuration of the patterns but shows that the primary spacing is not steady during the growth and that moreover it is not simply related to the diffusion length. Another measurable quantity is the occupancy ratio of the fingers in the cell. Its variation as a function of the experimental parameters is interpreted from specific properties of electrochemical growth. The results are discussed with respect to the well-known behavior of cellular solidification fronts.

17.
Phys Rev Lett ; 73(22): 2998-3001, 1994 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-10057256
19.
Phys Rev Lett ; 71(15): 2425-2428, 1993 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-10054677
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...