Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(W1): W478-W483, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207335

RESUMO

The distinct functions and phenotypes of human tissues and cells derive from the activity of biological processes that varies in a context-dependent manner. Here, we present the Process Activity (ProAct) webserver that estimates the preferential activity of biological processes in tissues, cells, and other contexts. Users can upload a differential gene expression matrix measured across contexts or cells, or use a built-in matrix of differential gene expression in 34 human tissues. Per context, ProAct associates gene ontology (GO) biological processes with estimated preferential activity scores, which are inferred from the input matrix. ProAct visualizes these scores across processes, contexts, and process-associated genes. ProAct also offers potential cell-type annotations for cell subsets, by inferring them from the preferential activity of 2001 cell-type-specific processes. Thus, ProAct output can highlight the distinct functions of tissues and cell types in various contexts, and can enhance cell-type annotation efforts. The ProAct webserver is available at https://netbio.bgu.ac.il/ProAct/.


Assuntos
Fenômenos Biológicos , Perfilação da Expressão Gênica , Software , Humanos , Ontologia Genética , Fenótipo , Especificidade de Órgãos , Internet
2.
Mol Syst Biol ; 19(8): e11407, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37232043

RESUMO

How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.


Assuntos
Aprendizado de Máquina , Doenças Raras , Humanos , Doenças Raras/genética , Medição de Risco , Causalidade
3.
Bioinformatics ; 38(6): 1584-1592, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35015838

RESUMO

MOTIVATION: The distinct functionalities of human tissues and cell types underlie complex phenotype-genotype relationships, yet often remain elusive. Harnessing the multitude of bulk and single-cell human transcriptomes while focusing on processes can help reveal these distinct functionalities. RESULTS: The Tissue-Process Activity (TiPA) method aims to identify processes that are preferentially active or under-expressed in specific contexts, by comparing the expression levels of process genes between contexts. We tested TiPA on 1579 tissue-specific processes and bulk tissue transcriptomes, finding that it performed better than another method. Next, we used TiPA to ask whether the activity of certain processes could underlie the tissue-specific manifestation of 1233 hereditary diseases. We found that 21% of the disease-causing genes indeed participated in such processes, thereby illuminating their genotype-phenotype relationships. Lastly, we applied TiPA to single-cell transcriptomes of 108 human cell types, revealing that process activities often match cell-type identities and can thus aid annotation efforts. Hence, differential activity of processes can highlight the distinct functionality of tissues and cells in a robust and meaningful manner. AVAILABILITY AND IMPLEMENTATION: TiPA code is available in GitHub (https://github.com/moranshar/TiPA). In addition, all data are available as part of the Supplementary Material. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Fenômenos Biológicos , Transcriptoma , Humanos
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593629

RESUMO

Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5' untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions. This uORF, upstream of the protein kinase C-eta (PKC-η) main ORF, encodes a peptide (uPEP2) containing the typical PKC pseudosubstrate motif present in all PKCs that autoinhibits their kinase activity. We show that uPEP2 directly binds to and selectively inhibits the catalytic activity of novel PKCs but not of classical or atypical PKCs. The endogenous deletion of uORF2 or its overexpression in MCF-7 cells revealed that the endogenously translated uPEP2 reduces the protein levels of PKC-η and other novel PKCs and restricts cell proliferation. Functionally, treatment of breast cancer cells with uPEP2 diminished cell survival and their migration and synergized with chemotherapy by interfering with the response to DNA damage. Furthermore, in a xenograft of MDA-MB-231 breast cancer tumor in mice models, uPEP2 suppressed tumor progression, invasion, and metastasis. Tumor histology showed reduced proliferation, enhanced cell death, and lower protein expression levels of novel PKCs along with diminished phosphorylation of PKC substrates. Hence, our study demonstrates that uORFs may encode biologically active peptides beyond their role as translation regulators of their downstream ORFs. Together, we point to a unique function of a uORF-encoded peptide as a kinase inhibitor, pertinent to cancer therapy.


Assuntos
Peptídeos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Fases de Leitura Aberta , Peptídeos/química , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Especificidade por Substrato
5.
Nat Commun ; 12(1): 2180, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846299

RESUMO

The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms.


Assuntos
Chaperonas Moleculares/metabolismo , Especificidade de Órgãos , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Linhagem Celular , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Camundongos , Chaperonas Moleculares/genética , Fases de Leitura Aberta/genética , Especificidade de Órgãos/genética
6.
Bioinformatics ; 36(9): 2821-2828, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960892

RESUMO

MOTIVATION: Differential network analysis, designed to highlight network changes between conditions, is an important paradigm in network biology. However, differential network analysis methods have been typically designed to compare between two conditions and were rarely applied to multiple protein interaction networks (interactomes). Importantly, large-scale benchmarks for their evaluation have been lacking. RESULTS: Here, we present a framework for assessing the ability of differential network analysis of multiple human tissue interactomes to highlight tissue-selective processes and disorders. For this, we created a benchmark of 6499 curated tissue-specific Gene Ontology biological processes. We applied five methods, including four differential network analysis methods, to construct weighted interactomes for 34 tissues. Rigorous assessment of this benchmark revealed that differential analysis methods perform well in revealing tissue-selective processes (AUCs of 0.82-0.9). Next, we applied differential network analysis to illuminate the genes underlying tissue-selective hereditary disorders. For this, we curated a dataset of 1305 tissue-specific hereditary disorders and their manifesting tissues. Focusing on subnetworks containing the top 1% differential interactions in disease-relevant tissue interactomes revealed significant enrichment for disorder-causing genes in 18.6% of the cases, with a significantly high success rate for blood, nerve, muscle and heart diseases. SUMMARY: Altogether, we offer a framework that includes expansive manually curated datasets of tissue-selective processes and disorders to be used as benchmarks or to illuminate tissue-selective processes and genes. Our results demonstrate that differential analysis of multiple human tissue interactomes is a powerful tool for highlighting processes and genes with tissue-selective functionality and clinical impact. AVAILABILITY AND IMPLEMENTATION: Datasets are available as part of the Supplementary data. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Fenômenos Biológicos , Mapas de Interação de Proteínas , Ontologia Genética , Redes Reguladoras de Genes , Humanos
7.
Nucleic Acids Res ; 46(D1): D522-D526, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29069447

RESUMO

DifferentialNet is a novel database that provides users with differential interactome analysis of human tissues (http://netbio.bgu.ac.il/diffnet/). Users query DifferentialNet by protein, and retrieve its differential protein-protein interactions (PPIs) per tissue via an interactive graphical interface. To compute differential PPIs, we integrated available data of experimentally detected PPIs with RNA-sequencing profiles of tens of human tissues gathered by the Genotype-Tissue Expression consortium (GTEx) and by the Human Protein Atlas (HPA). We associated each PPI with a score that reflects whether its corresponding genes were expressed similarly across tissues, or were up- or down-regulated in the selected tissue. By this, users can identify tissue-specific interactions, filter out PPIs that are relatively stable across tissues, and highlight PPIs that show relative changes across tissues. The differential PPIs can be used to identify tissue-specific processes and to decipher tissue-specific phenotypes. Moreover, they unravel processes that are tissue-wide yet tailored to the specific demands of each tissue.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Software , Atlas como Assunto , Osso e Ossos/química , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Rim/química , Rim/metabolismo , Pulmão/química , Pulmão/metabolismo , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Ovário/química , Ovário/metabolismo , Fenótipo , Próstata/química , Próstata/metabolismo , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...