Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 155: 292-301, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410146

RESUMO

The hypothesis of this study is that the complex organic load of landfill leachate could be reduced by supercritical water oxidation (SCWO) in a single stage, but this operation could lead to the formation of some undesired by-products of phthalate esters (PAEs). In this context, the fate of selected PAEs, butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), was investigated during the oxidation of leachate under subcritical and supercritical conditions. Experiments were conducted at various temperatures (250-500 °C), pressures (10-35 MPa), residence times (2-18 min) and dimensionless oxidant doses (DOD: 0.2-2.3). The SCWO process decreased the leachate's chemical oxygen demand (COD) from 34,400 mg/L to 1,120 mg/L (97%). Removal efficiencies of DEHP and DNOP with longer chains were higher than BBP. The DEHP, DNOP and BBP compounds were removed in the range of -35 to 100%, -18 to 92%, and 28 to 36%, respectively, by the SCWO process. Many non-target PAEs were qualitatively detected in the raw leachate apart from the selected PAEs. Besides, 97% of total PAEs including both target and non-target PAEs was mineralized at 15 MPa, 300 °C and 5 min. Although PAEs were highly mineralized during SCWO of the leachate, aldehyde, ester, amide and amine-based phthalic substances were frequently detected as by-products. These by-products have transformed into higher molecular weight by-products with binding reactions as a result of complex SCWO process chemistry. It has also been determined that some non-target PAEs such as 1,2-benzenedicarboxylic acid bis(2-methylpropyl)ester and bis(2-ethylhexyl) isophthalate can transform to the DEHP. Therefore, the suggested pathway in this study for PAEs degradation during the SCWO of the leachate includes substitution and binding reactions as well as an oxidation reaction.


Assuntos
Dietilexilftalato , Poluentes Químicos da Água , Ésteres
2.
Sci Total Environ ; 779: 146344, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030227

RESUMO

Passing of pharmaceutical residues into environment in an uncontrolled manner as a result of continuous increase in drug consumption across the globe has become a threatening problem for the ecosystems and almost all living creatures. In this study, diclofenac (DCF), carbamazepine (CBZ), 17ß-estradiol (17ß-E2) and 17α-ethynylestradiol (EE2) belonging to different therapeutic classes were investigated simultaneously in advanced biological treatment and nature-based treatments during 12-months sampling campaign. In this context, behavior patterns of pharmaceutically active compounds (PhACs) throughout the both wastewater and sludge lines in advanced biological wastewater treatment plant (WWTP), wastewater stabilization pond (WSP) and constructed wetland (CW) were discussed in detail based on each treatment processes seasonally. Furthermore, statistically evaluated data obtained in full-scale WWTPs were compared with each other in order to determine the valid removal mechanisms of these pharmaceutical compounds. While DCF and CBZ were detected very intensively both in the wastewater and sludge lines of the investigated WWTPs, steroid hormones,17ß-E2 and EE2, were determined below the LOQ value in general. Annual average removal efficiencies achieved in studied WWTPs for DCF ranged between -23.3% (in CW) and 75.2% (in WSP), while annual average removal rates obtained for CBZ varied between -20.7% (in advanced biological treatment) and 10.0% (in CW). It has been found that DCF was highly affected by different wastewater treatment processes applied in the WWTPs compared to CBZ which showed extraordinary resistance to all different treatment processes. Although calculated in different rates for each compounds, biodegradation/biotransformation and sorption onto sewage sludge were determined as the main removal mechanisms for PhACs in plants. Although showed a similar behavior in the sludge dewatering unit (decanter) present in the advanced biological WWTP, quite different behaviors observed in the anaerobic digester for DCF (up to 15% decrease) and CBZ (up to 95% increase). Sorption and desorption behaviors of DCF and CBZ were also evaluated in the sludge treatment processes found in advanced biological WWTP. Percentages of originated extra annual average of pharmaceutical loads were calculated as 0.64% and 0.90% for DCF and CBZ, respectively in the advanced biological WWTP due to the sidestream caused by the sludge dewatering unit.


Assuntos
Esgotos , Poluentes Químicos da Água , Ecossistema , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 413: 125326, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33611035

RESUMO

Landfill leachate contains several macropollutants and micropollutants that cannot be removed efficiently by conventional treatment processes. Therefore, an advanced oxidation process is a promising step in post or pre-treatment of leachate. In this study, the effects of Fenton and ozone oxidation on the removal of 16 emerging micropollutants including polycyclic aromatic hydrocarbons (PAHs), phthalates, alkylphenols and pesticides were investigated. The Fenton and ozone oxidation of the leachate were performed with four (reaction time: 20-90 min, Fe(II) dose: 0.51-2.55 g/L, H2O2 dose: 5.1-25.5 g/L and pH: 3-5) and two (ozonation time: 10-130 min and pH: 4-10) independent variables, respectively. Among these operating conditions, reaction time played more significant role (p-value < 0.05) in eliminating di-(2-Ethylhexyl) phthalate, 4-nonylphenol and 4-tert-octylphenol for both processes. The results showed that Fenton and ozone oxidation processes had a high degradation potential for micropollutants except for the PAHs including four and more rings. Removal efficiencies of micropollutants by ozone and Fenton oxidation were determined in the range of 5-100%. Although the removal efficiencies of chemical oxygen demand (COD) and some micropollutants such as phthalates were found much higher in the Fenton process than ozonation, the degradation products occurred during the Fenton oxidation were a higher molecular weight. Moreover, the oxidation intermediates for the both processes were found as mainly benzaldehyde, pentanoic acid and hydro cinnamic acid as well as derivatives of naphthalenone and naphthalenediol. Also, acid ester with higher molecular weight, naphthalene-based and phenolic compounds were detected in the Fenton oxidation.

4.
Sci Total Environ ; 748: 141423, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818893

RESUMO

Although the levels of micropollutants in landfill leachate and municipal wastewater are well-established, the individual removal mechanisms and the fate of micropollutants throughout a landfill leachate treatment plant (LTP) were seldom investigated. Therefore, the determination of the removal efficiencies and the fates of micropollutants in a full-scale leachate treatment plant located in the largest city of Turkey were aimed in this study. Some important processes, such as equalization pond, bioreactor, ultrafiltration (UF) and nanofiltration (NF), are being operated in the treatment plant. Landfill leachate was characterized as an intense pollution source of macro and micropollutants compared to other water types. Chemical oxygen demand (COD), NH3, suspended solids (SS) and electrical conductivity (EC) values of the landfill leachate (and their removal efficiencies in the treatment plant) were determined as 18,656 ± 12,098 mg/L (98%), 3090 ± 845 mg/L (99%), 4175 ± 1832 mg/L (95%) and 31 ± 2 mS/cm (51%), respectively. Within the scope of the study, the most frequently and abundantly detected micropollutants in the treatment plant were found as heavy metals (8 ± 1.7 mg/L), VOCs (38 ± 2 µg/L), alkylphenols (9 ± 3 µg/L) and phthalates (8 ± 3 µg/L) and the overall removal efficiencies of these micropollutants ranged from -11% to 100% in the treatment processes. The main removal mechanism of VOCs in the aerobic treatment process has been found as the volatilization due to Henry constants greater than 100 Pa·m3/mol. However, the molecular weight cut off restriction of UF membrane has caused to less or negative removal efficiencies for some VOCs. The biological treatment unit which consists of sequential anoxic and oxic units (A/O) was found effective on the removal of PAHs (62%) and alkylphenols (87%). It was inferred that both NO3 accumulation in anoxic reactor, high hydraulic retention time (HRT) and sludge retention time (SRT) in aerobic reactor provide higher biodegradation and volatilization efficiencies as compared to the literature. Membrane processes were more effective on the removal of alkylphenols (60-80%) and pesticides (59-74%) in terms of influent and effluent loads of each unit. Removal efficiencies for Cu, Ni and Cr, which were the dominant heavy metals, were determined as 92, 91 and 51%, respectively and the main removal mechanism for heavy metals has thought to be coprecipitation of suspended solids by microbial biopolymers in the bioreactor and the separation of colloids during membrane filtration. Total effluent loads of the LTP for VOCs, semi volatiles and heavy metals were 1.0 g/day, 5.2 g/day and 1.5 kg/day, respectively. It has been concluded that the LTP was effectively removing both conventional pollutants and micropollutants with the specific operation costs of 0.27 $/(kg of removed COD), 0.13 $/(g of removed VOCs), 0.35 $/(g of removed SVOCs) and 2.6 $/(kg of removed metals).

5.
Bioresour Technol ; 99(18): 8691-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18495478

RESUMO

This paper describes activation of pine cone with Fenton reagent and determines the removal of Cd(II) and Pb(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR and SEM analysis after activation of pine cone. The effect of Fe(2+)/H(2)O(2) ratio, ORP, pH and contact time were determined. Different adsorption isotherms were also obtained using concentrations of heavy metal ions ranging from 0.1 to 150mgL(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The study discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) and Pb(II) on activated cone, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiencies were obtained as 91% and 89% at pH 7 with 90 and 105-min contact time for Cd(II) and Pb(II), respectively.


Assuntos
Cádmio/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Chumbo/isolamento & purificação , Pinus/metabolismo , Adsorção , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , Fatores de Tempo
6.
Bioresour Technol ; 99(7): 2516-27, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17560782

RESUMO

This paper describes modification of a natural adsorbent with Fenton reagent and determines the removal of Cd(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR analysis after the modification of pine bark. The effect of Fe2+/H2O2 ratio, ORP, pH, and contact time were determined. Different adsorption isotherms were also obtained using concentrations of Cd(II) ions ranging from 0.1 to 100 mg L(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The paper discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) on modified bark, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiency obtained was 97% at pH 7 and with a 90-min contact time (for 35 mg L(-1) initial concentration and a 2.5 g L(-1) solid-to-liquid ratio).


Assuntos
Metais Pesados/química , Adsorção , Cinética , Pinus/química
7.
J Hazard Mater ; 150(3): 587-95, 2008 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-17561344

RESUMO

This paper describes the removal of Ni(II) ions from aqueous solutions using clinoptilolite. The effect of clinoptilolite level, contact time, and pH were determined. Different isotherms were also obtained using concentrations of Ni(II) ions ranging from 0.1 to 100 mg L(-1). The ion-exchange process follows second-order reaction kinetics and follows the Langmuir isotherm. The paper discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the ion-exchange of Ni(II) on clinoptilolite, and revealed that the ion-exchange process was spontaneous and exothermic under natural conditions. The maximum removal efficiency obtained was 93.6% at pH 7 and with a 45 min contact time (for 25 mg L(-1) initial concentration and a 15 g L(-1) solid-to-liquid ratio).


Assuntos
Níquel/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zeolitas/química , Adsorção , Troca Iônica , Cinética , Termodinâmica , Eliminação de Resíduos Líquidos/métodos
8.
J Hazard Mater ; 141(1): 77-85, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-16879919

RESUMO

This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100mgL(-1). The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3.


Assuntos
Metais Pesados/química , Quercus/química , Poluentes da Água/química , Madeira/química , Adsorção , Cromo/química , Cobre/química , Ácido Clorídrico , Concentração de Íons de Hidrogênio , Cinética , Níquel/química , Oxigênio/metabolismo , Termodinâmica , Fatores de Tempo , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...