Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(8): e10023, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35965975

RESUMO

Objective: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images. Material & methods: In this retrospective IRB-approved study, image segmentation of high-grade gliomas was semi-automatically performed using 3D Slicer. Non-contrast-enhanced T1-weighted images and contrast-enhanced T1-weighted images were used prior to surgical therapy or radio-chemotherapy. Imaging data was split into a training sample and an independent test sample at random. We extracted 107 radiomic features by use of PyRadiomics. Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). Results: Our cohort included 124 patients (female: n = 53), diagnosed with progressive (n = 61) and pseudoprogressive disease (n = 63) of primary high-grade gliomas. Based on non-contrast-enhanced T1-weighted images of the independent test sample, the mean area under the curve (AUC), mean sensitivity, mean specificity and mean accuracy of our model were 0.651 [0.576, 0.761], 0.616 [0.417, 0.833], 0.578 [0.417, 0.750] and 0.597 [0.500, 0.708] to predict the development of pseudoprogression. In comparison, the independent test data of contrast-enhanced T1-weighted images yielded significantly higher values of AUC = 0.819 [0.760, 0.872], sensitivity = 0.817 [0.750, 0.833], specificity = 0.723 [0.583, 0.833] and accuracy = 0.770 [0.687, 0.833]. Conclusion: Our findings show that it is possible to predict pseudoprogression of high-grade gliomas with a Radiomics model using contrast-enhanced T1-weighted images with comparatively good discriminatory power. The use of a contrast agent results in a clear added value.

2.
Sci Rep ; 12(1): 5915, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396525

RESUMO

Our aim is to define the capabilities of radiomics and machine learning in predicting pseudoprogression development from pre-treatment MR images in a patient cohort diagnosed with high grade gliomas. In this retrospective analysis, we analysed 131 patients with high grade gliomas. Segmentation of the contrast enhancing parts of the tumor before administration of radio-chemotherapy was semi-automatically performed using the 3D Slicer open-source software platform (version 4.10) on T1 post contrast MR images. Imaging data was split into training data, test data and an independent validation sample at random. We extracted a total of 107 radiomic features by hand-delineated regions of interest (ROI). Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). 131 patients were included, of which 64 patients had a histopathologically proven progressive disease and 67 were diagnosed with mixed or pure pseudoprogression after initial treatment. Our Radiomics approach is able to predict the occurrence of pseudoprogression with an AUC, mean sensitivity, mean specificity and mean accuracy of 91.49% [86.27%, 95.89%], 79.92% [73.08%, 87.55%], 88.61% [85.19%, 94.44%] and 84.35% [80.19%, 90.57%] in the full development group, 78.51% [75.27%, 82.46%], 66.26% [57.95%, 73.02%], 78.31% [70.48%, 84.19%] and 72.40% [68.06%, 76.85%] in the testing group and finally 72.87% [70.18%, 76.28%], 71.75% [62.29%, 75.00%], 80.00% [69.23%, 84.62%] and 76.04% [69.90%, 80.00%] in the independent validation sample, respectively. Our results indicate that radiomics is a promising tool to predict pseudo-progression, thus potentially allowing to reduce the use of biopsies and invasive histopathology.


Assuntos
Glioma , Aprendizado de Máquina , Glioma/diagnóstico por imagem , Glioma/terapia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...