Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 76: 66-75, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792435

RESUMO

New technologies involving in-situ chemical hexavalent chromium [Cr(VI)] reduction to trivalent chromium [Cr(III)] with natural Fe(II)-containing minerals can offer viable solutions to the treatment of wastewater and subsurface systems contaminated with Cr(VI). Here, the effects of five different chelating agents including citrate, EDTA, oxalate, tartrate and salicylate on reductive Cr(VI) removal from aqueous systems by pyrite were investigated in batch reactors. The Cr(VI) removal was highly dependent on the type of ligand used and chemical conditions (e.g., ligand concentration). While salicylate and EDTA had no or little effect on Cr(VI) removal, the ligands including citrate, tartrate and oxalate significantly enhanced Cr(VI) removal at pH < 7 relative to non-ligand systems. In general, the efficiency of organic ligands on Cr(VI) removal decreased in the order: citrate ≥ oxalate ≈ tartrate > EDTA > salicylate ≈ non-ligand system. Organic ligands enhanced Cr(VI) removal by 1) removing surface oxide layer via the formation of soluble Fe-Cr-ligand complexes, and 2) enhancing the reductive iron redox cycling for the regeneration of new surface sites. While citrate, oxalate and tartrate eliminated the formation of surface Cr (III)-Fe(III)-oxides, the surface phase Cr (III) species was observed in the presence of EDTA and salicylate indicating that Cr(III) complexed with EDTA and salicylate sorbed or precipitated onto pyrite surface, thereby blocking the access of CrO4(2-) to pyrite surface. The binding of Fe(III) with the disulfide reactive sites (≡Fe-S-S-Fe(III)) was essential for the regeneration of new surface sites through pyrite oxidation. Although Fe(III)-S species was detected at the pyrite surface in the presence of citrate, oxalate and tartrate, Fe(III) complexed with EDTA and salicylate did not strongly interact with the disulfide reactive sites due to the formation of non-sorbing Fe(III)-ligand complexes. The absence of surface Fe(III)-S species indicated that no new reactive sites were generated through Fe redox cycling in the presence of salicylate and EDTA.


Assuntos
Quelantes/química , Cromo/química , Ferro/química , Sulfetos/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Oxirredução , Águas Residuárias/química
2.
J Contam Hydrol ; 174: 28-38, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25644191

RESUMO

Laboratory batch and column experiments, in conjunction with geochemical calculations and spectroscopic analysis, were performed to better understand reaction mechanisms and kinetics associated with Cr(VI) removal from aqueous systems using pyrite as the reactive material under both static and dynamic flow conditions similar to those observed in in situ permeable reactive barriers (PRBs). The X-ray photoelectron spectroscopy (XPS) and geochemical calculations suggest that the Cr(VI) removal by pyrite occurred due to the reduction of Cr(VI) to Cr(III), coupled with the oxidation of Fe(II) to Fe(III) and S2(2-) to SO4(2-) at the pyrite surface. Zeta potential measurements indicate that although the pyrite surface was negatively charged under a wide pH range in the absence of Cr(VI), it behaved more like a "metal oxide" surface with the surface potential shifting from positive to negative values at pH values >pH 6 in the presence of Cr(VI). Batch experiments show that increasing solution pH led to a significant decrease in Cr(VI) removal. The decrease in Cr(VI) removal at high Cr(VI) concentrations and pH values can be explained through the precipitation of sparingly soluble Cr(OH)(3(s)), Fe(OH)(3(s)) and Fe(III)-Cr(III) (oxy) hydroxides onto pyrite surface which may, then, lead to surface passivation for further Cr(VI) reduction. Batch results also suggest that the reaction kinetics follow a first order model with rate constants decreasing with increasing solution pH, indicating proton consumption during Cr(VI) reduction by pyrite. Column experiments indicate that nearly 100% of total Fe in the column effluent was in the form of Fe(II) species with a [SO4(2-)]/[Fe(2+)] stoichiometric ratio of 2.04, indicating that the reduction of Cr(VI) by pyrite produced about 2 mol of sulfate per mole of Fe (II) release under excess surface sites relative to Cr(VI) concentration. Column experiments provide further evidence on the accumulation of oxidation products which consequently led to a significant pressure build up in pyrite packed columns over time.


Assuntos
Cromo/química , Ferro/química , Substâncias Redutoras/química , Sulfetos/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Oxirredução , Análise Espectral/métodos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...