Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216508

RESUMO

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Assuntos
Alcenos , Ácidos Graxos , Ácidos Graxos/metabolismo , Alcenos/química , Descarboxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
2.
J Exp Bot ; 73(11): 3651-3670, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176760

RESUMO

Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.


Assuntos
Agaricales , Cacau , Solanum lycopersicum , Agaricales/genética , Cacau/genética , Parede Celular , Citocininas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Açúcares , Água
3.
Mol Cell Proteomics ; 20: 100118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34186243

RESUMO

Oral squamous cell carcinoma (OSCC) has high mortality rates that are largely associated with lymph node metastasis. However, the molecular mechanisms that drive OSCC metastasis are unknown. Extracellular vesicles (EVs) are membrane-bound particles that play a role in intercellular communication and impact cancer development and progression. Thus, profiling EVs would be of great significance to decipher their role in OSCC metastasis. For that purpose, we used a reductionist approach to map the proteomic, miRNA, metabolomic, and lipidomic profiles of EVs derived from human primary tumor (SCC-9) cells and matched lymph node metastatic (LN1) cells. Distinct omics profiles were associated with the metastatic phenotype, including 670 proteins, 217 miRNAs, 26 metabolites, and 63 lipids differentially abundant between LN1 cell- and SCC-9 cell-derived EVs. A multi-omics integration identified 11 'hub proteins' significantly decreased at the metastatic site compared with primary tumor-derived EVs. We confirmed the validity of these findings with analysis of data from multiple public databases and found that low abundance of seven 'hub proteins' in EVs from metastatic lymph nodes (ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS) is correlated with reduced survival and tumor aggressiveness in patients with cancer. In summary, this multi-omics approach identified proteins transported by EVs that are associated with metastasis and which may potentially serve as prognostic markers in OSCC.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias Bucais/metabolismo , Animais , Linhagem Celular , Humanos , Metabolômica , Camundongos , MicroRNAs , Neoplasias Bucais/genética , Prognóstico , Proteômica
4.
Plant Cell Physiol ; 61(3): 606-615, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830271

RESUMO

Energy cane is a bioenergy crop with an outstanding ability to bud sprouting and increasing yield in ratoon cycles even in marginal lands. Bud fate control is key to biomass production and crop profits due to vegetative propagation and tiller dependency, as well as phenotype plasticity to withstand harsh environmental conditions. During the establishment stage (plant cane cycle), energy cane has a tendency for low root:shoot ratio, which might hamper the ability to cope with stress. Auxin is known to modulate bud sprouting and stimulate rooting in sugarcane. Hence, we treated a slow and a fast bud sprouting energy cane cultivars with auxin or controls (with and without water soaking) for 6 h prior to planting and evaluate plant growth parameters and metabolic profiling using two techniques (gas chromatography with time-of-flight mass spectrometer and nuclear magnetic resonance) to characterize the effect and identify metabolite markers associated with bud inhibition and outgrowth. Auxin inhibited bud burst and promote rooting in setts changing the root:shoot ratio of plantlets. Metabolome allowed the identification of lactate, succinate and aspartate family amino acids as involved in bud fate control through the potential modulation of oxygen and energy status. Investigating environmental and biochemical factors that regulate bud fate can be incremental to other monocot species. Our study provides new insights into bud quiescence and outgrowth in cane hybrids, with the potential to leverage our understanding of yield-related traits, crop establishment and adaptation to global climate change.


Assuntos
Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas , Ácido Láctico , Metaboloma , Fenótipo , Brotos de Planta/metabolismo , Saccharum/genética , Água
5.
Front Oncol ; 9: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949447

RESUMO

The allogeneic hematopoietic stem cell transplantation procedure-the only curative therapy for many types of hematological cancers-is increasing, and graft vs. host disease (GVHD) is the main cause of morbidity and mortality after transplantation. Currently, GVHD diagnosis is clinically performed. Whereas, biomarker panels have been developed for acute GVHD (aGVHD), there is a lack of information about the chronic form (cGVHD). Using nuclear magnetic resonance (NMR) and gas chromatography coupled to time-of-flight (GC-TOF) mass spectrometry, this study prospectively evaluated the serum metabolome of 18 Brazilian patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT). We identified and quantified 63 metabolites and performed the metabolomic profile on day -10, day 0, day +10 and day +100, in reference to day of transplantation. Patients did not present aGVHD or cGVHD clinical symptoms at sampling times. From 18 patients analyzed, 6 developed cGVHD. The branched-chain amino acids (BCAAs) leucine and isoleucine were reduced and the sulfur-containing metabolite (cystine) was increased at day +10 and day +100. The area under receiver operating characteristics (ROC) curves was higher than 0.79. BCAA findings were validated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in 49 North American patients at day +100; however, cystine findings were not statistically significant in this patient set. Our results highlight the importance of multi-temporal and multivariate biomarker panels for predicting and understanding cGVHD.

6.
Front Plant Sci ; 9: 857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988592

RESUMO

Metabolic composition is known to exert influence on several important agronomic traits, and metabolomics, which represents the chemical composition in a cell, has long been recognized as a powerful tool for bridging phenotype-genotype interactions. In this work, sixteen truly representative sugarcane Brazilian varieties were selected to explore the metabolic networks in buds and culms, the tissues involved in the vegetative propagation of this species. Due to the fact that bud sprouting is a key trait determining crop establishment in the field, the sprouting potential among the genotypes was evaluated. The use of partial least square discriminant analysis indicated only mild differences on bud outgrowth potential under controlled environmental conditions. However, primary metabolite profiling provided information on the variability of metabolic features even under a narrow genetic background, typical for modern sugarcane cultivars. Metabolite-metabolite correlations within and between tissues revealed more complex patterns for culms in relation to buds, and enabled the recognition of key metabolites (e.g., sucrose, putrescine, glutamate, serine, and myo-inositol) affecting sprouting ability. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites can be potentially used as indicators for the genetic background.

7.
Biotechnol Biofuels ; 11: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588660

RESUMO

BACKGROUND: Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. RESULTS: The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria, Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. CONCLUSION: The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.

8.
Sci Rep ; 5: 12698, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26237540

RESUMO

Hypoxia-inducible transcription factors (HIF) form heterodimeric complexes that mediate cell responses to hypoxia. The oxygen-dependent stability and activity of the HIF-α subunits is traditionally associated to post-translational modifications such as hydroxylation, acetylation, ubiquitination, and phosphorylation. Here we report novel evidence showing that unsaturated fatty acids are naturally occurring, non-covalent structural ligands of HIF-3α, thus providing the initial framework for exploring its exceptional role as a lipid sensor under hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ácido Linoleico/metabolismo , Neoplasias/metabolismo , Ácido Oleico/metabolismo , Proteínas Reguladoras de Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Ligantes , Ácido Linoleico/química , Modelos Moleculares , Monoglicerídeos/química , Monoglicerídeos/metabolismo , Neoplasias/genética , Neoplasias/patologia , Ácido Oleico/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras , Transdução de Sinais , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo , Análise Serial de Tecidos
9.
Meat Sci ; 74(2): 242-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22062831

RESUMO

The objective of this work was to evaluate the conjugated linoleic acid content (CLA), the fatty acid profile, and the chemical composition of the Longissimus muscle (LM) of steers and bulls finished in pasture systems. Fourteen 1/2 Nelore×1/2 Aberdeen Angus cattle were studied. The animals were slaughtered at approximately 20 months of age, with an approximate final liveweight of 480kg. Moisture, ash, fat, crude protein, cholesterol, and fatty acid contents of Longissimus muscle were determined. Steer muscle had a higher lipid content (3.38%) than that of bulls (1.71%). Total n-3 fatty acids were higher in bulls. The amounts of CLA in steer and bull fat were similar, but the CLA content in steer muscle was higher (47.99mg100g(-1) in LM) than that in bull muscle (23.24mg100g(-1) in LM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...