Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4983, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862555

RESUMO

Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.


Assuntos
Anopheles , Drosophila melanogaster , Tecnologia de Impulso Genético , Razão de Masculinidade , Espermatogênese , Cromossomo X , Animais , Masculino , Feminino , Anopheles/genética , Cromossomo X/genética , Drosophila melanogaster/genética , Tecnologia de Impulso Genético/métodos , Espermatogênese/genética , Mosquitos Vetores/genética , Genes Ligados ao Cromossomo X , Sistemas CRISPR-Cas , Espermatozoides/metabolismo , Animais Geneticamente Modificados
2.
Plant J ; 106(6): 1746-1758, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33837586

RESUMO

Floral guides are patterned cues that direct the pollinator to the plant reproductive organs. The spatial distribution of showy visual and olfactory traits allows efficient plant-pollinator interactions. Data on the mechanisms underlying floral volatile patterns or their interactions with pollinators are lacking. Here we characterize the spatial emission patterns of volatiles from the corolla of the model plant Petunia × hybrida and reveal the ability of honeybees to distinguish these patterns. Along the adaxial epidermis, in correlation with cell density, the petal base adjacent to reproductive organs emitted significantly higher levels of volatiles than the distal petal rim. Volatile emission could also be differentiated between the two epidermal surfaces: emission from the adaxial side was significantly higher than that from the abaxial side. Similar emission patterns were also observed in other petunias, Dianthus caryophyllus (carnation) and Argyranthemum frutescens (Marguerite daisy). Analyses of transcripts involved in volatile production/emission revealed lower levels of the plasma-membrane transporter ABCG1 in the abaxial versus adaxial epidermis. Transient overexpression of ABCG1 enhanced emission from the abaxial epidermis to the level of the adaxial epidermis, suggesting its involvement in spatial emission patterns in the epidermal layers. Proboscis extension response experiments showed that differences in emission levels along the adaxial epidermis, that is, petal base versus rim, detected by GC-MS are also discernible by honeybees.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Abelhas/fisiologia , Flores/química , Odorantes/análise , Petunia/fisiologia , Proteínas de Plantas/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Flores/metabolismo , Proteínas de Plantas/genética , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
3.
J Insect Physiol ; 124: 104074, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540467

RESUMO

Lipids have a key role in a variety of physiological functions in insects including energy, reproduction, growth and development. Whereas most of the required fatty acids can be synthesized endogenously, omega-3 and omega-6 polyunsaturated fatty acids (PUFA) are essential fatty acids that must be acquired through nutrition. Honey bees (Apis mellifera) obtain lipids from pollen, but different pollens vary in nutritional composition, including of PUFAs. Low floral diversity and abundance may expose bees to nutritional stress. We tested the effect of total lipids concentration and their omega-6:3 ratio on aspects of honey bee physiology: brood development, adult longevity and body fatty acids composition. All three parameters were affected by dietary lipid concentration and omega-6:3 ratio. Higher lipid concentration in diet increased brood production, and high omega-6:3 ratio increased mortality rate and decreased brood rearing. Fatty acid analysis of the bees showed that the amount of lipids and the omega-6:3 ratio in their body generally reflected the composition of the diet on which they fed. Consistent with previous findings of the importance of a balanced omega-6:3 ratio diet for learning performance, we found that such a balanced PUFA diet, with above threshold total lipid composition, is also necessary for maintaining proper colony development.


Assuntos
Abelhas/metabolismo , Abelhas/fisiologia , Composição Corporal , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Metabolismo dos Lipídeos , Ração Animal/análise , Animais , Abelhas/crescimento & desenvolvimento , Composição Corporal/efeitos dos fármacos , Dieta , Larva/crescimento & desenvolvimento , Larva/metabolismo
4.
Front Psychol ; 9: 1001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971031

RESUMO

Floral pollen is a major source of honey bee nutrition that provides them with micro- and macro-nutrients, including proteins, fatty acids, vitamins, and minerals. Different pollens vary in composition, including in the essential fatty acids, alpha-linolenic acid (omega-3) and linoleic acid (omega-6). Monocultures, prevalent in modern agriculture, may expose honey bee colonies to unbalanced omega-6:3 diets. The importance of omega-3 in the diet for adequate learning and cognitive function, with a focus on suitable omega-6:3 ratio, is well documented in mammals. We have recently shown, for the first time in invertebrates, the importance of omega-3 in diets for associative learning ability in honey bees. In the current work, we examine the effect of the absolute amount of omega-3 in diet compared to the omega-6:3 ratio on honey bee associative learning. We fed newly emerged bees for 1 week on different artificial diets, which had lipid concentration of 1, 2, 4, or 8%, with omega-6:3 ratios of 0.3, 1, or 5, respectively. We then tested the bees in a proboscis-extension response olfactory conditioning assay. We found that both omega-6:3 ratio and total lipid concentration affected learning. The most detrimental diet for learning was that with a high omega-6:3 ratio of 5, regardless of the absolute amount of omega-3 in the diet. Bees fed an omega-6:3 ratio of 1, with 4% total lipid concentration achieved the best performance. Our results with honey bees are consistent with those found in mammals. Best cognitive performance is achieved by a diet that is sufficiently rich in essential fatty acids, but as long as the omega-6:3 ratio is not high.

5.
Proc Natl Acad Sci U S A ; 112(51): 15761-6, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644556

RESUMO

Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3-poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3-rich diets, or omega-3-rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal.


Assuntos
Abelhas/fisiologia , Ácidos Graxos Ômega-3/fisiologia , Aprendizagem , Animais , Química Encefálica , Cognição , Condicionamento Clássico , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Pólen/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...