Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37892016

RESUMO

The lungs are critical components of the respiratory system because they allow for the exchange of oxygen and carbon dioxide within our bodies. However, a variety of conditions can affect the lungs, resulting in serious health consequences. Lung disease treatment aims to control its severity, which is usually irrevocable. The fundamental objective of this endeavor is to build a consistent and automated approach for establishing the intensity of lung illness. This paper describes MixNet-LD, a unique automated approach aimed at identifying and categorizing the severity of lung illnesses using an upgraded pre-trained MixNet model. One of the first steps in developing the MixNet-LD system was to build a pre-processing strategy that uses Grad-Cam to decrease noise, highlight irregularities, and eventually improve the classification performance of lung illnesses. Data augmentation strategies were used to rectify the dataset's unbalanced distribution of classes and prevent overfitting. Furthermore, dense blocks were used to improve classification outcomes across the four severity categories of lung disorders. In practice, the MixNet-LD model achieves cutting-edge performance while maintaining model size and manageable complexity. The proposed approach was tested using a variety of datasets gathered from credible internet sources as well as a novel private dataset known as Pak-Lungs. A pre-trained model was used on the dataset to obtain important characteristics from lung disease images. The pictures were then categorized into categories such as normal, COVID-19, pneumonia, tuberculosis, and lung cancer using a linear layer of the SVM classifier with a linear activation function. The MixNet-LD system underwent testing in four distinct tests and achieved a remarkable accuracy of 98.5% on the difficult lung disease dataset. The acquired findings and comparisons demonstrate the MixNet-LD system's improved performance and learning capabilities. These findings show that the proposed approach may effectively increase the accuracy of classification models in medicinal image investigations. This research helps to develop new strategies for effective medical image processing in clinical settings.

2.
Sensors (Basel) ; 19(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336818

RESUMO

The inevitable revolution of the Internet of Things (IoT) and its benefits can be witnessed everywhere. Two major issues related to IoT are the interoperability and the identification of trustworthy things. The proposed Context-Aware Trustworthy Social Web of Things System (CATSWoTS) addresses the interoperability issue by incorporating web technologies including Service Oriented Architecture where each thing plays the role of a service provider as well as a role of service consumer. The aspect of social web helps in getting recommendations from social relations. It was identified that the context dependency of trust along with Quality of Service (QoS) criteria, for identifying and recommending trustworthy Web of Things (WoT), require more attention. For this purpose, the parameters of context awareness and the constraints of QoS are considered. The research focuses on the idea of a user-centric system where the profiles of each thing (level of trustworthiness) are being maintained at a centralized level and at a distributed level as well. The CATSWoTS evaluates service providers based on the mentioned parameters and the constraints and then identifies a suitable service provider. For this, a rule-based collaborative filtering approach is used. The efficacy of CATSWoTS is evaluated with a specifically designed environment using a real QoS data set. The results showed that the proposed novel technique fills the gap present in the state of the art. It performed well by dynamically identifying and recommending trustworthy services as per the requirements of a service seeker.

3.
Comput Math Methods Med ; 2014: 241647, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506388

RESUMO

Computed tomography (CT) is an important imaging modality. Physicians, surgeons, and oncologists prefer CT scan for diagnosis of lung cancer. However, some nodules are missed in CT scan. Computer aided diagnosis methods are useful for radiologists for detection of these nodules and early diagnosis of lung cancer. Early detection of malignant nodule is helpful for treatment. Computer aided diagnosis of lung cancer involves lung segmentation, potential nodules identification, features extraction from the potential nodules, and classification of the nodules. In this paper, we are presenting an automatic method for detection and segmentation of lung nodules from CT scan for subsequent features extraction and classification. Contribution of the work is the detection and segmentation of small sized nodules, low and high contrast nodules, nodules attached with vasculature, nodules attached to pleura membrane, and nodules in close vicinity of the diaphragm and lung wall in one-go. The particular techniques of the method are multistep threshold for the nodule detection and shape index threshold for false positive reduction. We used 60 CT scans of "Lung Image Database Consortium-Image Database Resource Initiative" taken by GE medical systems LightSpeed16 scanner as dataset and correctly detected 92% nodules. The results are reproducible.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Diagnóstico por Computador/métodos , Humanos , Imageamento Tridimensional , Pulmão/diagnóstico por imagem , Modelos Teóricos , Reprodutibilidade dos Testes
4.
ScientificWorldJournal ; 2014: 809636, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558332

RESUMO

Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique.


Assuntos
Algoritmos , Monitoramento Ambiental/métodos , Inundações , Mapeamento Geográfico , Aumento da Imagem/métodos , Inundações/estatística & dados numéricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...