Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291776

RESUMO

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of -26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cordyceps/química , Emulsões/química , Nanopartículas/química , Animais , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antioxidantes/química , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células HaCaT , Humanos , Camundongos , Óxido Nítrico/química , Óleos Voláteis/química , Tamanho da Partícula , Polissorbatos/química , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos
2.
Mol Biol Rep ; 47(10): 7699-7708, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32974840

RESUMO

Chrysanthemum indicum L. is a traditional oriental medicinal herb prepared as a tea from flowers that have been used in China and South Korea since ancient times. It has a long history in the treatment of hypertension, inflammation, and respiratory diseases. Among Chrysanthemum species, C. indicum has more active chemical components as well as better therapeutic effects, and C. indicum is mostly used for medicinal purposes in South Korea. However, the usage of C. indicum has become problematic over the years due to the abundance of adulterated Chrysanthemum and confusion with morphologically related species such as C. morifolium, C. boreale, and Aster spathulifolius. Thus, here we developed a method for molecular authentication using chloroplast universal region rpoC2 and morphological authentication based on T-shaped trichomes of the adaxial leaf surface. By using a species-specific primer derived from the rpoC2 region, we established a multiplex allele-specific PCR for the discrimination of C. indicum. Amplicons of 675 bp for C. indicum and 1026 bp for other Chrysanthemum species were produced using both rpoC2-specific and common primers. These primers can be used to analyze dried samples of Chrysanthemum. Morphological discrimination was performed using T-shaped trichomes present only on the adaxial leaf surface of C. indicum species, and then molecular markers were utilized to authenticate C. indicum products from adulterant samples available in the market. Our results indicate that these molecular markers in combination with morphological differentiation can serve as an effective tool for identifying C. indicum.


Assuntos
Alelos , Cloroplastos/genética , Chrysanthemum/genética , Plantas Medicinais/genética , Reação em Cadeia da Polimerase , Tricomas/genética , Chrysanthemum/classificação , Plantas Medicinais/classificação , Especificidade da Espécie , Tricomas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...