Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(3)2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36977070

RESUMO

Fat atrophy and adipose tissue inflammation can cause the pathogenesis of metabolic symptoms in chronic kidney disease (CKD). During CKD, the serum levels of advanced oxidation protein products (AOPPs) are elevated. However, the relationship between fat atrophy/adipose tissue inflammation and AOPPs has remained unknown. The purpose of this study was to investigate the involvement of AOPPs, which are known as uremic toxins, in adipose tissue inflammation and to establish the underlying molecular mechanism. In vitro studies involved co-culturing mouse-derived adipocytes (differentiated 3T3-L1) and macrophages (RAW264.7). In vivo studies were performed using adenine-induced CKD mice and AOPP-overloaded mice. Fat atrophy, macrophage infiltration and increased AOPP activity in adipose tissue were identified in adenine-induced CKD mice. AOPPs induced MCP-1 expression in differentiated 3T3-L1 adipocytes via ROS production. However, AOPP-induced ROS production was suppressed by the presence of NADPH oxidase inhibitors and the scavengers of mitochondria-derived ROS. A co-culturing system showed AOPPs induced macrophage migration to adipocytes. AOPPs also up-regulated TNF-α expression by polarizing macrophages to an M1-type polarity, and then induced macrophage-mediated adipose inflammation. In vitro data was supported by experiments using AOPP-overloaded mice. AOPPs contribute to macrophage-mediated adipose inflammation and constitute a potential new therapeutic target for adipose inflammation associated with CKD.


Assuntos
Produtos da Oxidação Avançada de Proteínas , Insuficiência Renal Crônica , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ativação de Macrófagos , Inflamação/metabolismo , Insuficiência Renal Crônica/metabolismo , Obesidade , Rim/metabolismo
2.
J Control Release ; 355: 42-53, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690035

RESUMO

Non-alcoholic fatty liver disease (NAFLD) currently affects about 25% of the world's population, and the numbers continue to rise as the number of obese patients increases. However, there are currently no approved treatments for NAFLD. This study reports on the evaluation of the therapeutic effect of a recombinant human serum albumin-fibroblast growth factor 21 analogue fusion protein (HSA-FGF21) on the pathology of NAFLD that was induced by using two high-fat diets (HFD), HFD-60 and STHD-01. The HFD-60-induced NAFLD model mice with obesity, insulin resistance, dyslipidemia and hepatic lipid accumulation were treated with HSA-FGF21 three times per week for 4 weeks starting at 12 weeks after the HFD-60 feeding. The administration of HSA-FGF21 suppressed the increased body weight, improved hyperglycemia, hyperinsulinemia, and showed a decreased accumulation of plasma lipid and hepatic lipid levels. The elevation of C16:0, C18:0 and C18:1 fatty acids in the liver that were observed in the HFD-60 group was recovered by the HSA-FGF21 administration. The increased expression levels of the hepatic fatty acid uptake receptor (CD36) and fatty acid synthase (SREBP-1c, FAS, SCD-1, Elovl6) were also suppressed. In adipose tissue, HSA-FGF21 caused an improved adipocyte hypertrophy, a decrease in the levels of inflammatory cytokines and induced the expression of adiponectin and thermogenic factors. The administration of HSA-FGF21 to the STHD-01-induced NAFLD model mice resulted in suppressed plasma ALT and AST levels, oxidative stress, inflammatory cell infiltration and fibrosis. Together, HSA-FGF21 has some potential for use as a therapeutic agent for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Albuminas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos/farmacologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Albumina Sérica Humana
3.
Toxins (Basel) ; 13(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34941746

RESUMO

Activation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis. Among the seven protein-bound uremic toxins, only indoxyl sulfate (IS) caused significant activation of mTORC1 in human kidney 2 cells (HK-2 cells). This IS-induced mTORC1 activation was inhibited in the presence of an organic anion transporter inhibitor, a NADPH oxidase inhibitor, and an antioxidant. IS also induced epithelial-mesenchymal transition of tubular epithelial cells (HK-2 cells), differentiation of fibroblasts into myofibroblasts (NRK-49F cells), and inflammatory response of macrophages (THP-1 cells), which are associated with renal fibrosis, and these effects were inhibited in the presence of rapamycin (mTORC1 inhibitor). In in vivo experiments, IS overload was found to activate mTORC1 in the mouse kidney. The administration of AST-120 or rapamycin targeted to IS or mTORC1 ameliorated renal fibrosis in Adenine-induced CKD mice. The findings reported herein indicate that IS activates mTORC1, which then contributes to renal fibrosis. Therapeutic interventions targeting IS and mTORC1 could be effective against renal fibrosis in CKD.


Assuntos
Fibrose/induzido quimicamente , Indicã/farmacologia , Nefropatias/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , NADPH Oxidases/metabolismo , Ornitina-Oxo-Ácido Transaminase/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Túbulos Renais/citologia , Macrófagos/efeitos dos fármacos , NADPH Oxidases/genética , Ornitina-Oxo-Ácido Transaminase/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
J Cachexia Sarcopenia Muscle ; 12(6): 1832-1847, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599649

RESUMO

BACKGROUND: Sarcopenia with chronic kidney disease (CKD) progression is associated with life prognosis. Oxidative stress has attracted interest as a trigger for causing CKD-related muscular atrophy. Advanced oxidation protein products (AOPPs), a uraemic toxin, are known to increase oxidative stress. However, the role of AOPPs on CKD-induced muscle atrophy remains unclear. METHODS: In a retrospective case-control clinical study, we evaluated the relationship between serum AOPPs levels and muscle strength in haemodialysis patients with sarcopenia (n = 26, mean age ± SEM: 78.5 ± 1.4 years for male patients; n = 22, mean age ± SEM: 79.1 ± 1.5 for female patients), pre-sarcopenia (n = 12, mean age ± SEM: 73.8 ± 2.0 years for male patients; n = 4, mean age ± SEM: 74.3 ± 4.1 for female patients) or without sarcopenia (n = 12, mean age ± SEM: 71.3 ± 1.6 years for male patients; n = 7, mean age ± SEM: 77.7 ± 1.6 for female ). The molecular mechanism responsible for the AOPPs-induced muscle atrophy was investigated by using 5/6-nephrectomized CKD mice, AOPPs-overloaded mice, and C2C12 mouse myoblast cells. RESULTS: The haemodialysis patients with sarcopenia showed higher serum AOPPs levels as compared with the patients without sarcopenia. The serum AOPPs levels showed a negative correlation with grip strength (P < 0.01 for male patients, P < 0.01 for female patients) and skeletal muscle index (P < 0.01 for male patients). Serum AOPPs levels showed a positive correlation with cysteinylated albumin (Cys-albumin), a marker of oxidative stress (r2  = 0.398, P < 0.01). In the gastrocnemius of CKD mice, muscle AOPPs levels were also increased, and it showed a positive correlation with atrogin-1 (r2  = 0.538, P < 0.01) and myostatin expression (r2  = 0.421, P < 0.05), but a negative correlation with PGC-1α expression (r2  = 0.405, P < 0.05). Using C2C12 cells, AOPPs increased atrogin-1 and myostatin expression through the production of reactive oxygen species via CD36/NADPH oxidase pathway, and decreased myotube formation. AOPPs also induced mitochondrial dysfunction. In the AOPPs-overloaded mice showed that decreasing running time and hanging time accompanied by increasing AOPPs levels and decreasing cross-sectional area in gastrocnemius. CONCLUSIONS: Advanced oxidation protein products contribute to CKD-induced sarcopenia, suggesting that AOPPs or its downstream signalling pathway could be a therapeutic target for the treatment of CKD-induced sarcopenia. Serum AOPPs or Cys-albumin levels could be a new diagnostic marker for sarcopenia in CKD.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Produtos da Oxidação Avançada de Proteínas/metabolismo , Animais , Antígenos CD36 , Feminino , Humanos , Masculino , Camundongos , NADPH Oxidases/metabolismo , Estresse Oxidativo , Oxirredutases , Insuficiência Renal Crônica/complicações , Estudos Retrospectivos , Sarcopenia/etiologia
6.
Toxins (Basel) ; 12(8)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764271

RESUMO

Adipose tissue inflammation appears to be a risk factor for the progression of chronic kidney disease (CKD), but the effect of CKD on adipose tissue inflammation is poorly understood. The purpose of this study was to clarify the involvement of uremic toxins (indoxyl sulfate (IS), 3-indoleacetic acid, p-cresyl sulfate and kynurenic acid) on CKD-induced adipose tissue inflammation. IS induces monocyte chemoattractant protein-1 (MCP-1) expression and reactive oxygen species (ROS) production in the differentiated 3T3L-1 adipocyte. An organic anion transporter (OAT) inhibitor, an NADPH oxidase inhibitor or an antioxidant suppresses the IS-induced MCP-1 expression and ROS production, suggesting the OAT/NADPH oxidase/ROS pathway is involved in the action of IS. Co-culturing 3T3L-1 adipocytes and mouse macrophage cells showed incubating adipocytes with IS increased macrophage infiltration. An IS-overload in healthy mice increased IS levels, oxidative stress and MCP-1 expression in epididymal adipose tissue compared to unloaded mice. Using 5/6-nephrectomized mice, the administration of AST-120 suppressed oxidative stress and the expression of MCP-1, F4/80 and TNF-α in epididymal adipose tissue. These collective data suggest IS could be a therapeutic target for the CKD-related inflammatory response in adipose tissue, and that AST-120 could be useful for the treatment of IS-induced adipose tissue inflammation.


Assuntos
Tecido Adiposo/metabolismo , Indicã/metabolismo , Inflamação/metabolismo , NADPH Oxidases/metabolismo , Insuficiência Renal Crônica/metabolismo , Células 3T3-L1 , Tecido Adiposo/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Carbono/farmacologia , Carbono/uso terapêutico , Quimiocina CCL2/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Óxidos/farmacologia , Óxidos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...