Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282049

RESUMO

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections, including with SARS-CoV-2. Here, we identified a gene program, defined by correlation with EN-RAGE (S100A12) gene expression, which was up-regulated in airway and blood myeloid cells from COVID-19 patients. The EN-RAGE program was expressed in 7 cohorts and observed in patients with both COVID-19 and acute respiratory distress syndrome (ARDS) from other causes. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGE+ myeloid cells express features consistent with suppressor cell functionality, with low HLA-DR and high PD-L1 surface expression and higher expression of T cell-suppressive genes. Sustained EN-RAGE signature expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell exhaustion markers, such as PD-1. IL-6 treatment of monocytes in vitro upregulated many of the severity-associated genes in the EN-RAGE gene program, along with potential mediators of T cell suppression, such as IL-10. Blockade of IL-6 signaling by tocilizumab in a placebo-controlled clinical trial led to a rapid normalization of ENRAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

2.
J Immunol ; 193(8): 4214-4222, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225670

RESUMO

The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (Nlrp3) inflammasome plays an important role in inflammation by controlling the maturation and secretion of the cytokines IL-1ß and IL-18 in response to multiple stimuli including pore-forming toxins, particulate matter, and ATP. Although the pathways activated by the latter stimuli lead to a decrease in intracellular K(+) concentration, which is required for inflammasome activation, the mechanism by which microbial RNA activates Nlrp3, remains poorly understood. In this study, we found that cytosolic poly(I:C), but not total RNA from healthy macrophages, macrophages undergoing pyroptosis, or mitochondrial RNA, induces caspase-1 activation and IL-1ß release through the Nlrp3 inflammasome. Experiments with macrophages deficient in Tlr3, Myd88, or Trif, indicate that poly(I:C) induces Nlrp3 activation independently of TLR signaling. Further analyses revealed that the cytosolic sensors Rig-I and melanoma differentiation-associated gene 5 act redundantly via the common adaptor mitochondrial antiviral signaling (Mavs) to induce Nlrp3 activation in response to poly(I:C), but not ATP or nigericin. Mechanistically, Mavs triggered membrane permeabilization and K(+) efflux independently of the inflammasome which were required for poly(I:C)-induced Nlrp3 activation. We conclude that poly (I:C) activates the inflammasome through an Mavs-dependent surveillance pathway that converges into a common K(+) lowering step in the cytosol that is essential for the induction of Nlrp3 activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Transporte/imunologia , Potássio/metabolismo , RNA de Cadeia Dupla/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Caspase 1/imunologia , Citosol , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Inflamação/imunologia , Helicase IFIH1 Induzida por Interferon , Interleucina-18/biossíntese , Interleucina-18/metabolismo , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Transporte de Íons , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Poli I-C/imunologia , RNA Bacteriano/imunologia , RNA Viral/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...