Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 20(11): 3423-38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24729460

RESUMO

We studied forest monitoring data collected at permanent plots in Italy over the period 2000-2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N-NO3 +N-NH4 ) ranged between 4 and 29 kg ha(-1)  yr(-1) , with Critical Loads (CLs) for nutrient N exceeded at several sites. Evidence is consistent in pointing out effects of N deposition on soil and tree nutrition: topsoil exchangeable base cations (BCE) and pH decreased with increasing N deposition, and foliar nutrient N ratios (especially N : P and N : K) increased. Comparison between bulk openfield and throughfall data suggested possible canopy uptake of N, levelling out for bulk deposition >4-6 kg ha(-1)  yr(-1) . Partial Least Square (PLS) regression revealed that - although stand and meteorological variables explained the largest portion of variance in relative basal area increment (BAIrel 2000-2009) - N-related predictors (topsoil BCE, C : N, pH; foliar N-ratios; N deposition) nearly always improved the BAIrel model in terms of variance explained (from 78.2 to 93.5%) and error (from 2.98 to 1.50%). N deposition was the strongest predictor even when stand, management and atmosphere-related variables (meteorology and tropospheric ozone) were accounted for. The maximal annual response of BAIrel was estimated at 0.074-0.085% for every additional kgN. This corresponds to an annual maximal relative increase of 0.13-0.14% of carbon sequestered in the above-ground woody biomass for every additional kgN, i.e. a median value of 159 kgC per kgN ha(-1)  yr(-1) (range: 50-504 kgC per kgN, depending on the site). Positive growth response occurred also at sites where signals of possible, perhaps recent N saturation were detected. This may suggest a time lag for detrimental N effects, but also that, under continuous high N input, the reported positive growth response may be not sustainable in the long-term.


Assuntos
Poluentes Atmosféricos/metabolismo , Florestas , Nitrogênio/metabolismo , Poluentes do Solo/metabolismo , Árvores/crescimento & desenvolvimento , Monitoramento Ambiental , Itália
2.
Sci Total Environ ; 417-418: 214-23, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22281043

RESUMO

Deposition of inorganic nitrogen (N) in north-western Italy is around 20-25 kg N ha(-1)y(-1), and has remained constant during the last 30 years. This flux of N caused saturation of terrestrial catchments and increasing levels of nitrate (NO(3)) in surface waters. Recently, monitoring data for both rivers and lakes have shown a reversal in NO(3) trends. This change was widespread, affecting high-altitude lakes in the Alps and subalpine lakes and rivers, and occurred at almost the same time at all sites. The seasonal pattern of NO(3) concentrations in running waters has shown a change in the last few years, with a tendency towards slightly lower leaching of NO(3) during the growing season. Atmospheric input of N has also shown a recent decrease, mainly due to decreasing emissions and partly to the lower amount of precipitation occurring between 2003 and 2009. Surface waters are probably responding to these changing N inputs, but a further decrease of N deposition, especially reduced N, will be required to achieve full recovery from N saturation.


Assuntos
Nitratos/análise , Poluentes Químicos da Água/análise , Análise Fatorial , Itália , Lagos , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...