Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 891: 164398, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244616

RESUMO

Ozone (O3) is an air pollutant that is toxic to trees. O3 reduces steady-state net photosynthetic rate (A), and the adverse effects of O3 are mitigated under elevated CO2 condition. However, the combined effects of O3 and elevated CO2 on dynamic photosynthesis under variable light conditions have not yet been clarified. In this study, we investigated the effects of O3 and elevated CO2 on dynamic photosynthesis in the leaves of Fagus crenata seedlings under variable light conditions. The seedlings were grown under four gas treatments comprising two levels of O3 concentration (lower and two times higher than the ambient O3 concentration) and two levels of CO2 concentration (ambient and 700 ppm). Although O3 significantly decreased steady-state A under ambient CO2 concentrations, no significant decrease was observed under elevated CO2 concentrations, indicating the mitigating effect of elevated CO2 on O3-induced adverse effects on steady-state A. During photosynthetic induction, the response of A to the change in photosynthetic photon flux density (PPFD) from 50 (low light) to 1000 µmol m-2 s-1 (high light) showed that the increase in A was slowed by O3 and accelerated by elevated CO2. Under fluctuating light condition of repeating low light for 4 min and high light for 1 min, A at end of each high light period gradually decreased in all treatments, and O3 and elevated CO2 accelerated the reduction of A. In contrast to steady-state A, no mitigating effect of elevated CO2 was observed for any parameters related to dynamic photosynthesis. We conclude that the combined effects of O3 and elevated CO2 on A of F. crenata are different under steady-state and variable light conditions, and the O3-induced decrease in leaf A may not be mitigated by elevated CO2 in the field under variable light conditions.


Assuntos
Fagus , Ozônio , Dióxido de Carbono/toxicidade , Fagus/fisiologia , Plântula , Ozônio/toxicidade , Fotossíntese , Folhas de Planta/fisiologia
2.
Environ Pollut ; 304: 119233, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358628

RESUMO

Ozone (O3) is a phytotoxic air pollutant, the adverse effects of which on growth and photosynthesis are modified by other environmental factors. In this study, we examined the combined effects of O3, elevated CO2, and soil nitrogen supply on Siebold's beech seedlings. Seedlings were grown under combinations of two levels of O3 (low and two times ambient O3 concentration), two levels of CO2 (ambient and 700 ppm), and three levels of soil nitrogen supply (0, 50, and 100 kg N ha-1 year-1) during two growing seasons (2019 and 2020), with leaf photosynthetic traits being determined during the second season. We found that elevated CO2 ameliorated O3-induced reductions in photosynthetic activity, whereas the negative effects of O3 on photosynthetic traits were enhanced by soil nitrogen supply. We observed three-factor interactions in photosynthetic traits, with the ameliorative effects of elevated CO2 on O3-induced reductions in the maximum rate of carboxylation being more pronounced under high than under low soil nitrogen conditions in July. In contrast, elevated CO2-induced amelioration of the effects of O3 on stomatal function-related traits was more pronounced under low soil nitrogen conditions. Although we observed several two- or three-factor interactions of gas and soil treatments with respect to leaf photosynthetic traits, the shoot to root dry mass (S/R) ratio was the only parameter for which a significant interaction was detected among seedling growth parameters. O3 caused a significant increase in S/R under ambient CO2 conditions, whereas no similar effects were observed under elevated CO2 conditions. Collectively, our findings reveal the complex interactive effects of elevated CO2 and soil nitrogen supply on the detrimental effects of O3 on leaf photosynthetic traits, and highlight the importance of taking into consideration differences between the responses of CO2 uptake and growth to these three environmental factors.


Assuntos
Fagus , Ozônio , Dióxido de Carbono/toxicidade , Nitrogênio/toxicidade , Ozônio/toxicidade , Fotossíntese , Folhas de Planta , Plântula , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...