RESUMO
This comprehensive study on the Andalusian Black cattle breed reveals a substantial population decline, with the average herd size decreasing significantly from 305.54 to 88.28 animals per herd. This decline is primarily attributed to agricultural changes and the introduction of foreign meat-focused breeds. The male-to-female ratio shift is noteworthy, with more cows than bulls, impacting selection intensity for both genders. Inbreeding levels, though relatively low historically (5.94%) and currently (7.23%), raise concerns as 37.08% historically and 48.82% currently of the animals exhibit inbreeding. Positive assortative mating is evident, reflected by the increasing non-random mating coefficient (α). Key ancestors play a crucial role in shaping genetic diversity, with one ancestor significantly influencing the current genetic pool and the top 10 ancestors contributing substantially. Breed maintains a conservation index of 2.75, indicating relatively high genetic diversity. Recent conservation efforts have led to an increase in registered animals. The Cañadas Reales, historical transhumance routes, may have contributed to genetic connections among provinces. Challenges include the historical bottleneck, demographic changes, and potential impacts from reproductive practices. The Andalusian Black breed's conservation necessitates ongoing efforts in genealogical registration, targeted breeding programs, and collaborative initiatives to address the observed demographic shifts and ensure sustainable genetic diversity.
RESUMO
Nothofagus alessandrii (ruil) is an endangered relict species, endemic to the Mediterranean area of Chile, and one of the most threatened trees in the country. Its natural distribution area has been greatly reduced by the effect of human activities; the remaining fragments are mostly intervened and highly deteriorated as a habitat and refuge for the associated biodiversity. In order to produce healthy and resistant nursery plants for recovery and restoration of N. alessandrii forests, this study evaluates the early effects of mycorrhizal fungal inoculum (MFI) combined with fertilization on the cultivation of seedlings. The experiment was established under a completely randomized design with a factorial arrangement of the mycorrhizal factors (M0 = without mycorrhizal, M1 = Thelephora sp. and M2 = Hebeloma sp.) and fertilization (F1 = standard fertilization and F2 = intensive fertilization), with three replicates of each combination, for each type of plant (P1 = plants from one season and P2 = plants from two seasons). Each experimental unit corresponded to a group of 20 plants, with 720 plants in the test. The results indicate that application of fertilizer and MFI significantly affects some growth and photosynthesis parameters of ruil plants in one and two seasons. The morphological parameters obtained in the study show shoot height values ranging between 67 and 91 cm for P1 and between 96 and 111 cm for P2; while, for shoot diameter, values ranged between 7.91 and 8.24 mm for P1 and between 10.91 and 11.49 mm for P2. Although formation of fully developed mycorrhizal roots was not observed during the assay period, we conclude that inoculation of mycorrhizal fungi combined with fertilization could be an efficient strategy to produce a quality plant, in addition to maintaining a high photosynthetic capacity and, therefore, a higher percentage of survival in the field.
RESUMO
Strawberry is one of the most widely consumed fruit, but this crop is highly susceptible to drought, a condition strongly associated with climate change, causing economic losses due to the lower product quality. In this context, plant root-associated fungi emerge as a new and novel strategy to improve crop performance under water-deficiency stress. This study aimed to investigate the supplementation of two Antarctic vascular plant-associated fungal endophytes, Penicillium brevicompactum and Penicillium chrysogenum, in strawberry plants to develop an efficient, effective, and ecologically sustainable approach for the improvement of plant performance under drought stress. The symbiotic association of fungal endophytes with strawberry roots resulted in a greater shoot and root biomass production, higher fruit number, and an enhanced plant survival rate under water-limiting conditions. Inoculation with fungal endophytes provokes higher photosynthetic efficiency, lower lipid peroxidation, a modulation in antioxidant enzymatic activity, and increased proline content in strawberry plants under drought stress. In conclusion, promoting beneficial symbiosis between plants and endophytes can be an eco-friendly strategy to cope with drought and help to mitigate the impact of diverse negative effects of climate change on crop production.
RESUMO
The location of trees and the individualization of their canopies are important parameters to estimate diameter, height, and biomass, among other variables. The very high spatial resolution of UAV imagery supports these processes. A dense 3D point cloud is generated from RGB UAV images, which is used to obtain a digital elevation model (DEM). From this DEM, a canopy height model (CHM) is derived for individual tree identification. Although the results are satisfactory, the quality of this detection is reduced if the working area has a high density of vegetation. The objective of this study was to evaluate the use of color vegetation indices (CVI) in canopy individualization processes of Pinus radiata. UAV flights were carried out, and a 3D dense point cloud and an orthomosaic were obtained. Then, a CVI was applied to 3D point cloud to differentiate between vegetation and nonvegetation classes to obtain a DEM and a CHM. Subsequently, an automatic crown identification procedure was applied to the CHM. The results were evaluated by contrasting them with results of manual individual tree identification on the UAV orthomosaic and those obtained by applying a progressive triangulated irregular network to the 3D point cloud. The results obtained indicate that the color information of 3D point clouds is an alternative to support individualizing trees under conditions of high-density vegetation.
Assuntos
Pinus , Biomassa , ÁrvoresRESUMO
Temperature is one of the most important abiotic factors affecting seed germination, and it is strongly influenced by local site conditions. Seeds of Nothofagus glauca, an endemic and vulnerable species of the Mediterranean region of Chile and the most representative of the Mediterranean forests of South America, were collected. In this study, we evaluated the effect of temperature on different germinative attributes of five N. glauca provenances representative of their natural distribution. The seeds were treated at a constant temperature (i.e., 18 °C, 22 °C, 26 °C, or 30 °C) in the absence of light for 40 days. The results show that in all the provenances, the germination ratio and energy increase linearly with temperature until reaching an optimum temperature (i.e., 22 °C), above which they decrease severely. At 22 °C, the response of average germination speed and germination vigor was significantly higher than with the other temperatures (performance of germination start day was not clear). The base temperature was around 18 °C and the maximum, above 30 °C, which may be close to thermo-inhibition. Given the threat of climate change, it is necessary to increase research in terms of the possible adaptation of this species to increased temperatures and prolonged periods of drought.
RESUMO
Pinus radiata D. Don is the most widely planted exotic species in Australia, Chile, New Zealand and Spain. In this study, growth and survival of P. radiata were compared in 30 open pollinated families grown under two contrasting watering regimes in nursery (well-watered cf. water-stress conditions) and planted on a drought-prone site with Mediterranean climate in central Chile. This study assessed phenotypic plasticity in growth and survival at nursery stage and two years after establishment in the field. Family plasticity at nursery stage was estimated by the angular phenotypic change index (APCI), while the relationship between nursery and field traits was estimated by genetic correlations (rg) and the Pearson coefficient of correlation (rxy). Families presented high plasticity in diameter, height, and survival at nursery stage. Out of 30 families, eight exhibited over 80 % survival in the well-watered treatment, but less than 20 % survival in the water-stress treatment. As expected, growth traits and survival were positively correlated (rg and rxy > 0.65) between both nursery environments. However, for growth, most genetic and phenotypic correlations between combinations of nursery treatments versus the field test were negative or not significant. As there was no detectable pattern of nurseryfield correlations regarding to combinations of nursery treatments and test site, the need to include more stable families and genotypes to an appropriate developmental stage at nursery is discussed.
Assuntos
Pinus/crescimento & desenvolvimento , SecasRESUMO
Pinus radiata D. Don is the most widely planted exotic species in Australia, Chile, New Zealand and Spain. In this study, growth and survival of P. radiata were compared in 30 open pollinated families grown under two contrasting watering regimes in nursery (well-watered cf. water-stress conditions) and planted on a drought-prone site with Mediterranean climate in central Chile. This study assessed phenotypic plasticity in growth and survival at nursery stage and two years after establishment in the field. Family plasticity at nursery stage was estimated by the angular phenotypic change index (APCI), while the relationship between nursery and field traits was estimated by genetic correlations (rg) and the Pearson coefficient of correlation (rxy). Families presented high plasticity in diameter, height, and survival at nursery stage. Out of 30 families, eight exhibited over 80 % survival in the well-watered treatment, but less than 20 % survival in the water-stress treatment. As expected, growth traits and survival were positively correlated (rg and rxy > 0.65) between both nursery environments. However, for growth, most genetic and phenotypic correlations between combinations of nursery treatments versus the field test were negative or not significant. As there was no detectable pattern of nurseryfield correlations regarding to combinations of nursery treatments and test site, the need to include more stable families and genotypes to an appropriate developmental stage at nursery is discussed.(AU)