Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 21(3): 849-870, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35137283

RESUMO

In this paper, the effect of the turbulence and swirling of the inlet flow and the diameter of the nozzle on the flow characteristics and the particles' transport/deposition patterns in a realistic combination of the nasal cavity (NC) and the maxillary sinus (MS) were examined. A computational fluid dynamics (CFD) model was developed in ANSYS® Fluent using a hybrid Reynolds averaged Navier-Stokes-large-eddy simulation algorithm. For the validation of the CFD model, the pressure distribution in the NC was compared with the experimental data available in the literature. An Eulerian-Lagrangian approach was employed for the prediction of the particle trajectories using a discrete phase model. Different inlet flow conditions were investigated, with turbulence intensities of 0.15 and 0.3, and swirl numbers of 0.6 and 0.9 applied to the inlet flow at a flow rate of 7 L/min. Monodispersed particles with a diameter of 5 µm were released into the nostril for various nozzle diameters. The results demonstrate that the nasal valve plays a key role in nasal resistance, which damps the turbulence and swirl intensities of the inlet flow. Moreover, it was found that the effect of turbulence at the inlet of the NC on drug delivery to the MS is negligible. It was also demonstrated that increasing the flow swirl at the inlet and decreasing the nozzle diameter improves the total particle deposition more than threefold due to the generation of the centrifugal force, which acts on the particles in the nostril and vestibule. The results also suggest that the drug delivery efficiency to the MS can be increased by using a swirling flow with a moderate swirl number of 0.6. It was found that decreasing the nozzle diameter can increase drug delivery to the proximity of the ostium in the middle meatus by more than 45%, which subsequently increases the drug delivery to the MS. The results can help engineers design a nebulizer to improve the efficiency of drug delivery to the maxillary sinuses.


Assuntos
Baías , Seio Maxilar , Simulação por Computador , Sistemas de Liberação de Medicamentos , Hidrodinâmica
2.
J Biomech Eng ; 144(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318321

RESUMO

Temporal variations of the coronary arteries during a cardiac cycle are defined as the superposition of the changes in the position, curvature, and torsion of the coronary artery axis markers and the variations in the lumen cross-sectional shape due to the distensible wall motion induced by the pulse pressure and contraction of the myocardium in a cardiac cycle. This review discusses whether modeling of the temporal variations of the coronary arteries is needed for the investigation of hemodynamics specifically in time-critical applications such as a clinical environment. The numerical modelings in the literature that model or disregard the temporal variations of the coronary arteries on the hemodynamic parameters are discussed. The results in the literature show that neglecting the effects of temporal geometric variations is expected to result in about 5% deviation of the time-averaged pressure drop and wall shear stress values and also about 20% deviation of the temporal variations of hemodynamic parameters, such as time-dependent wall shear stress and oscillatory shear index. This review study can be considered as a guide for future studies to outline the conditions in which temporal variations of the coronary arteries can be neglected while providing a reliable estimation of hemodynamic parameters.


Assuntos
Vasos Coronários , Modelos Cardiovasculares , Simulação por Computador , Coração , Hemodinâmica , Estresse Mecânico
3.
Int J Pharm ; 606: 120927, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303821

RESUMO

Acoustic drug delivery (ADD) is an innovative method for drug delivery to the nose and paranasal sinuses and can be used to treat chronic rhinosinusitis (CRS). The underlying mechanism of ADD is based on the oscillatory exchange of air between the nasal cavity (NC) and the maxillary sinus (MS) through the ostium, which assists with the transfer of the drug particles from the NC to the sinuses. This study aims to examine the efficacy of ADD for drug delivery to the MS using an acoustic wave applied to nebulised aerosols entering the nostril. Here, the effect of acoustic frequency, amplitude, and nebulisation flowrate on the efficiency of ADD to the MS is investigated experimentally. A computational fluid dynamics model was also developed to understand the deposition and transport patterns of the aerosols. The results showed that superimposing an acoustic frequency of 328 Hz, which is the resonance frequency of the selected 3D printed model of the NC-MS combination, on the nebulised aerosols could improve the efficiency of the drug delivery to the MS by 75-fold compared with non-acoustic drug delivery case (p < 0.0001). The experimental data also shows that an increase in the amplitude of excitation, increases the concentration of aerosol deposition in the MS significantly; however, it reaches to a plateau at a sound pressure level of 120 dB re 20 µPa.


Assuntos
Seios Paranasais , Sinusite , Acústica , Aerossóis/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Seio Maxilar , Sinusite/tratamento farmacológico
4.
Comput Methods Programs Biomed ; 196: 105647, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688138

RESUMO

BACKGROUND AND OBJECTIVE: Coronary artery diseases and aortic valve stenosis are two of the main causes of mortality and morbidity worldwide. Stenosis of the aortic valve develops due to calcium deposition on the aortic valve leaflets during the cardiac cycle. Clinical investigations have demonstrated that aortic valve stenosis not only affects hemodynamic parameters inside the aortic root but also has a significant influence on the coronary artery hemodynamics and leads to the initiation of coronary artery disease. The aim of this study is to investigate the effect of calcification of the aortic valve on the variation of hemodynamic parameters in the aortic root and coronary arteries in order to find potential locations for initiation of the coronary stenoses. METHODS: Fluid structure interaction modelling methodology was used to simulate aortic valve hemodynamics in the presence of coronary artery flow. A 2-D model of the aortic valve leaflets was developed in ANSYS Fluent based on the available echocardiography images in literature. The k-ω SST turbulence model was utilised to model the turbulent flow downstream of the leaflets. RESULTS: The effects of calcification of the aortic valve on aortic root hemodynamics including transvalvular pressure gradient, valve orifice dimeter, vorticity magnitude in the sinuses and wall shear stress on the ventricularis and fibrosa layers of the leaflets were studied. Results revealed that the transvalvular pressure gradient increases from 792 Pa (∼ 6 mmHg) for a healthy aortic valve to 2885 Pa (∼ 22 mmHg) for a severely calcified one. Furthermore, the influence of the calcification of the aortic valve leaflets on the velocity profile and the wall shear stress in the coronary arteries was investigated and used for identification of potential locations of initiation of the coronary stenoses. Obtained results show that the maximum velocity inside the coronary arteries at early diastole decreases from 1 m/s for the healthy valve to 0.45 m/s for the severely calcified case. CONCLUSIONS: Calcification significantly decreases the wall shear stress of the coronary arteries. This reduction in the wall shear stress can be a main reason for initiation of the coronary atherosclerosis process and eventually results in coronary stenoses.


Assuntos
Estenose da Valva Aórtica , Calcinose , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Calcinose/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Hemodinâmica , Humanos , Modelos Cardiovasculares
5.
Eur J Pharm Sci ; 151: 105398, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485346

RESUMO

This paper investigates the effect of aero-acoustic parameters on the efficiency of acoustically-driven drug delivery (ADD) to human maxillary sinus (MS). To be more specific, the effect of the frequency, amplitude at the acoustic excitation, and the inlet mean flow rate on the efficiency of ADD to the MS is studied. Direct computational aero-acoustics, using a validated computational fluid dynamics (CFD) model, has been utilised to carry out the parametric study. The transport pattern of the particles (drugs) in the presence of an external acoustic field has been investigated through the discrete phase model. Extensive computational simulations have revealed that the most important parameter in acoustically-driven drug delivery to the MS is the amplitude of the oscillation of the air plug in the ostium, which is largest when the combination of nasal cavity and MS is at resonance. Also, it has been found that the amplitude of the inlet acoustic wave has a direct correlation with the efficiency of the drug delivery to the MS. Moreover, the inlet mean airflow rate adversely affects the efficiency of the drug delivery to the MS. The results of this study suggest that applying an external acoustic field after distributing the drug particles with no mean flow results in a better drug delivery than in the presence of an inlet mean flow.


Assuntos
Seios Paranasais , Preparações Farmacêuticas , Acústica , Simulação por Computador , Sistemas de Liberação de Medicamentos , Humanos , Seio Maxilar , Cavidade Nasal
6.
Int J Numer Method Biomed Eng ; 36(7): e3347, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362019

RESUMO

The turbulence in the blood flow, caused by plaque deposition on the arterial wall, increases by the combined effect of the complex plaque geometries and the pulsatile blood flow. The correlation between the plaque geometry, the pulsatile inlet flow and the induced turbulence in a constricted artery is investigated in this study. Pressure drop, flow velocity and wall shear stress are determined for stenosed coronary artery models with three different degrees of asymmetric stenosis and for different heart working conditions. A Computational Fluid Dynamics model, validated against experimental data published in the literature, was developed to simulate the blood pulsatile flow inside a stenosed coronary artery model. The transitional flow behaviour was quantified by investigation of the changes in the turbulence kinetic energy. It was shown that the separation starts from the side of the asymmetric stenosis and spreads to its opposite side further downstream. The results suggest that there is a high risk of the formation of a secondary stenosis at a downstream distance equal to 10 times of the artery diameter at the side and bottom regions of the first stenosis due to the existence of the recirculation zones and low shear stresses. Finally, a stenosed patient-specific coronary artery model was employed to illustrate the applicability of the obtained results for real geometry models. The results of this study provide a good prediction of pressure drop and blood flow rate, which can be applied in the investigation of the heart muscle workout and the required heart power.


Assuntos
Vasos Coronários , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Constrição Patológica , Humanos , Fluxo Pulsátil
7.
Biomech Model Mechanobiol ; 19(2): 557-575, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31573057

RESUMO

Acoustically driven nebulized drug delivery (acoustic aerosol delivery) is the most efficient noninvasive technique for drug delivery to maxillary sinuses (MS). This method is based on the oscillation of the air plug inside the ostium to transport drug particles from the nasal cavity (NC) to the MS. The larger the wavelength of the air plug oscillation in the ostium, the greater the penetration of drug particles to the MS. However, using this technique, the maximum drug delivery efficiency achieved to date is 5%, which means 95% of the aerosolized drugs do not enter the MS and are wasted. Since the largest amplitude of the air plug oscillation occurs at its resonance frequency, to achieve an improved MS drug delivery efficiency, it is important to determine the resonance frequency of the nose-sinus combination accurately. This paper aims to investigate the impact of geometrical parameters on the resonance frequency of the nose-sinus model. Both experimental and computational acoustic models, along with the theoretical analysis, were conducted to determine the resonance frequency of an idealized nose-sinus model. The computational modeling was carried out using computational fluid dynamics (CFD) and finite element analysis (FEA), whereas in the analytical solution, the mathematical relationships developed for a conventional Helmholtz resonator were employed. A series of experiments were also conducted to measure the resonance frequency of a realistic NC-MS combination. The results demonstrated a good agreement between the experimental and CFD modeling, while the FEA and theoretical analysis showed a significant deviation from the experimental data. Also, it was shown that the resonance frequency of the idealized nose-sinus model increases by up to twofold with increasing the ostium diameter from 3 to 9 mm; however, it has an inverse relationship with the ostium length and sinus volume. It was also reported that the resonance frequency of the nose-sinus model is independent of the NC width and MS shape.


Assuntos
Acústica , Sistemas de Liberação de Medicamentos , Seio Maxilar/anatomia & histologia , Análise de Elementos Finitos , Humanos , Hidrodinâmica , Seio Maxilar/diagnóstico por imagem , Modelos Anatômicos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...