Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-496341

RESUMO

SummaryNatural killer (NK) cells are cytotoxic effector cells that target and lyse virally-infected cells; many viruses therefore encode mechanisms to escape such NK cell killing. Here, we interrogated the ability of SARS-CoV-2 to modulate NK cell recognition and lysis of infected cells. We found that NK cells exhibit poor cytotoxic responses against SARS-CoV-2-infected targets, preferentially killing uninfected bystander cells. We demonstrate that this escape is driven by downregulation of ligands for the activating receptor NKG2D ("NKG2D-L"). Indeed, early in viral infection, prior to NKG2D-L downregulation, NK cells are able to target and kill infected cells; however, this ability is lost as viral proteins are expressed. Finally, we found that SARS-CoV-2 non-structural protein 1 (Nsp1) mediates downregulation of NKG2D-L and that Nsp1 alone is sufficient to confer resistance to NK cell killing. Collectively, our work reveals that SARS-CoV-2 evades NK cell cytotoxicity and describes a mechanism by which this occurs. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=190 SRC="FIGDIR/small/496341v1_ufig1.gif" ALT="Figure 1"> View larger version (47K): org.highwire.dtl.DTLVardef@bcffeeorg.highwire.dtl.DTLVardef@469b0eorg.highwire.dtl.DTLVardef@16dd205org.highwire.dtl.DTLVardef@f78070_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-491266

RESUMO

Early stages of deadly respiratory diseases such as COVID-19 have been challenging to elucidate due to lack of an experimental system that recapitulates the cellular and structural complexity of the human lung, while allowing precise control over disease initiation and systematic interrogation of molecular events at cellular resolution. Here we show healthy human lung slices cultured ex vivo can be productively infected with SARS-CoV-2, and the cellular tropism of the virus and its distinct and dynamic effects on host cell gene expression can be determined by single cell RNA sequencing and reconstruction of "infection pseudotime" for individual lung cell types. This revealed the prominent SARS-CoV-2 target is a population of activated interstitial macrophages, which as infection proceeds accumulate thousands of viral RNA molecules per cell, comprising up to 60% of the cellular transcriptome and including canonical and novel subgenomic RNAs. During viral takeover, there is cell-autonomous induction of a specific host interferon program and seven chemokines (CCL2, 7, 8, 13, CXCL10) and cytokines (IL6, IL10), distinct from the response of alveolar macrophages in which neither viral takeover nor induction of a substantial inflammatory response occurs. Using a recombinant SARS-CoV-2 Spike-pseudotyped lentivirus, we show that entry into purified human lung macrophages depends on Spike but is not blocked by cytochalasin D or by an ACE2-competing monoclonal antibody, indicating a phagocytosis- and ACE2-independent route of entry. These results provide a molecular characterization of the initiation of COVID-19 in human lung tissue, identify activated interstitial macrophages as a prominent site of viral takeover and focus of inflammation, and suggest targeting of these macrophages and their signals as a new therapeutic modality for COVID-19 pneumonia and progression to ARDS. Our approach can be generalized to define the initiation program and evaluate therapeutics for any human lung infection at cellular resolution.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-465626

RESUMO

The COVID-19 pandemic, caused by the viral pathogen SARS-CoV-2, has taken the lives of millions of individuals around the world. Obesity is associated with adverse COVID-19 outcomes, but the underlying mechanism is unknown. In this report, we demonstrate that human adipose tissue from multiple depots is permissive to SARS-CoV-2 infection and that infection elicits an inflammatory response, including the secretion of known inflammatory mediators of severe COVID-19. We identify two cellular targets of SARS-CoV-2 infection in adipose tissue: mature adipocytes and adipose tissue macrophages. Adipose tissue macrophage infection is largely restricted to a highly inflammatory subpopulation of macrophages, present at baseline, that is further activated in response to SARS-CoV-2 infection. Preadipocytes, while not infected, adopt a proinflammatory phenotype. We further demonstrate that SARS-CoV-2 RNA is detectable in adipocytes in COVID-19 autopsy cases and is associated with an inflammatory infiltrate. Collectively, our findings indicate that adipose tissue supports SARS-CoV-2 infection and pathogenic inflammation and may explain the link between obesity and severe COVID-19. One sentence summaryOur work provides the first in vivo evidence of SARS-CoV-2 infection in human adipose tissue and describes the associated inflammation.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-457626

RESUMO

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel variant of concern (VOC) designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and shown to enhance infectivity in vitro and decrease antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both strains exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most body weight loss among all 3 lineages. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three strains. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the upper respiratory tract (URT) but not in the lungs. In multi-virus in-vivo competition experiments, we found that epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the URT gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) variants in hamsters. These results demonstrate enhanced virulence and high relative fitness of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) strain. Author SummaryIn the last 12 months new variants of SARS-CoV-2 have arisen in the UK, South Africa, Brazil, India, and California. New SARS-CoV-2 variants will continue to emerge for the foreseeable future in the human population and the potential for these new variants to produce severe disease and evade vaccines needs to be understood. In this study, we used the hamster model to determine the epsilon (B.1.427/429) SARS-CoV-2 strains that emerged in California in late 2020 cause more severe disease and infected hamsters have higher viral loads in the upper respiratory tract compared to the prior B.1 (614G) strain. These findings are consistent with human clinical data and help explain the emergence and rapid spread of this strain in early 2021.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450475

RESUMO

Although vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been successful, there are no good treatments for those who are actively infected. While SARS-CoV-2 primarily infects the respiratory tract, clinical evidence indicates that cells from sensory organs and the brain are also susceptible to infection. While many patients suffer from diverse neurological symptoms, the viruss neuronal entry remains mysterious. To discover host factors involved in SARS-CoV-2 viral entry, we performed CRISPR activation (CRISPRa) screens targeting all 6000+ human membrane proteins in cells with and without overexpression of ACE2 using Spike-pseudotyped lentiviruses. This unbiased gain-of-function screening identified both novel and previously validated host factors. Notably, newly found host factors have high expression in neuronal and immune cells, including potassium channel KCNA6, protease LGMN, and MHC-II component HLA-DPB1. We validated these factors using replication-competent SARS-CoV-2 infection assays. Notably, the overexpression of KCNA6 led to a marked increase in infection even in cells with undetectable levels of ACE2 expression. Analysis of human olfactory epithelium scRNA-seq data revealed that OLIG2+/TUJ1+ cells--previously identified as sites of infection in COVID-19 autopsy studies-- have high KCNA6 expression and minimal levels of ACE2. The presence of KCNA6 may thus explain sensory/neuronal aspects of COVID-19 symptoms. Further, we demonstrate that FDA-approved compound dalfampridine, an inhibitor of KCNA-family potassium channels, suppresses viral entry in a dosage-dependent manner. Finally, we identified common prescription drugs likely to modulate the top identified host factors, and performed a retrospective analysis of insurance claims of ~8 million patients. This large cohort study revealed a statistically significant association between top drug classes, particularly those targeting potassium channels, and COVID-19 severity. Taken together, the potassium channel KCNA6 facilitates neuronal entry of SARS-CoV-2 and is a promising target for drug repurposing and development.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-444397

RESUMO

The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity1. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic2. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identified an LNA ASO binding to the 5 leader sequence of SARS-CoV-2 ORF1a/b that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the K18-hACE2 humanized COVID-19 mouse model potently (98-99%) suppressed viral replication in the lungs of infected mice, revealing strong prophylactic and treatment effects. We found that the LNA ASO also represses viral infection in golden Syrian hamsters, and is highly efficacious in countering all SARS-CoV-2 "variants of concern" tested in vitro and in vivo, including B.1.427, B.1.1.7, and B.1.351 variants3. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce transmission of variants partially resistant to vaccines and monoclonal antibodies, and could be deployed intranasally for prophylaxis or via lung delivery by nebulizer to decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences4, and they may have particular impact in areas where vaccine distribution is a challenge, and could be stockpiled for future coronavirus pandemics.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256131

RESUMO

BackgroundGiven the persistence of viral RNA in clinically recovered COVID-19 patients, subgenomic RNAs (sgRNA) have been reported as potential molecular viability markers for SARS-CoV-2. However, few data are available on their longitudinal kinetics, compared with genomic RNA (gRNA), in clinical samples. MethodsWe analyzed 536 samples from 205 patients with COVID-19 from placebo-controlled, outpatient trials of Peginterferon Lambda-1a (Lambda; n=177) and favipiravir (n=359). Nasal swabs were collected at three time points in the Lambda (Day 1, 4 and 6) and favipiravir (Day 1, 5, and 10) trials. N-gene gRNA and sgRNA were quantified by RT-qPCR. To investigate the decay kinetics in vitro, we measured gRNA and sgRNA in A549ACE2+ cells infected with SARS-CoV-2, following treatment with remdesivir or DMSO control. ResultsAt six days in the Lambda trial and ten days in the favipiravir trial, sgRNA remained detectable in 51.6% (32/62) and 49.5% (51/106) of the samples, respectively. Cycle threshold (Ct) values for gRNA and sgRNA were highly linearly correlated (Pearsons r=0.87) and the rate of increase did not differ significantly in Lambda (1.36 cycles/day vs 1.36 cycles/day; p = 0.97) or favipiravir (1.03 cycles/day vs 0.94 cycles/day; p=0.26) trials. From samples collected 15-21 days after symptom onset, sgRNA was detectable in 48.1% (40/83) of participants. In SARS-CoV-2 infected A549ACE2+ cells treated with remdesivir, the rate of Ct increase did not differ between gRNA and sgRNA. ConclusionsIn clinical samples and in vitro, sgRNA was highly correlated with gRNA and did not demonstrate different decay patterns to support its application as a viability marker. SummaryWe observed prolonged detection of subgenomic RNA in nasal swabs and equivalent decay rates to genomic RNA in both longitudinal nasal swabs and in remdesivir-treated A549ACE2+ cells infected with SARS-CoV-2. Taken together, these findings suggest that subgenomic RNA from SARS-CoV-2 is comparably stable to genomic RNA and that its detection is therefore not a more reliable indicator of replicating virus.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-339473

RESUMO

We thank Alquicira-Hernandez et al. for their reanalysis of our single-cell transcriptomic dataset profiling peripheral immune responses to severe COVID-19. We agree that careful analysis of single-cell sequencing data is important for generating cogent hypotheses but find several aspects of their criticism of our analysis to be problematic. Here we respond briefly to misunderstandings and inaccuracies in their commentary that may have led to misinformed interpretation of our results.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20175794

RESUMO

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, could offer protective immunity, and may affect clinical outcomes of COVID-19 patients. We analyzed 625 serial plasma samples from 40 hospitalized COVID-19 patients and 170 SARS-CoV-2-infected outpatients and asymptomatic individuals. Severely ill patients developed significantly higher SARS-CoV-2-specific antibody responses than outpatients and asymptomatic individuals. The development of plasma antibodies was correlated with decreases in viral RNAemia, consistent with potential humoral immune clearance of virus. Using a novel competition ELISA, we detected antibodies blocking RBD-ACE2 interactions in 68% of inpatients and 40% of outpatients tested. Cross-reactive antibodies recognizing SARS-CoV RBD were found almost exclusively in hospitalized patients. Outpatient and asymptomatic individuals serological responses to SARS-CoV-2 decreased within 2 months, suggesting that humoral protection may be short-lived.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-212076

RESUMO

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5+ cells contained a distinct ITGA6+ITGB4+ mitotic population whose proliferation segregated to a TNFRSF12Ahi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12Ahi subset of FACS-purified ITGA6+ITGB4+ basal cells from human lung or derivative organoids. In vivo, TNFRSF12A+ cells comprised ~10% of KRT5+ basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 "apical-out" organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-194456

RESUMO

During virus infection B cells are critical for the production of antibodies and protective immunity. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify extensive convergence of antibody sequences across SARS-CoV-2 patients, highlighting stereotyped naive responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20103549

RESUMO

RationaleElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare to those observed in critically ill patients with ARDS or sepsis due to other causes. ObjectivesTo directly compare plasma levels of inflammatory cytokines, with a focus on 6 cytokines associated with cytokine storm (IL-1b, IL-1RA, IL-6, IL-8, IL-18, and TNF), between hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients from prior to the COVID-19 pandemic. Findings15 hospitalized COVID-19 patients, 9 of whom were critically ill, were compared to 28 critically ill patients with ARDS or sepsis. There were no statistically significant differences in baseline levels of IL-1b, IL-1RA, IL-6, IL-8, IL-18, and TNF between patients with severe COVID-19 and critically ill controls with ARDS or sepsis. ConclusionsLevels of inflammatory cytokines IL-1b, IL-1RA, IL-6, IL-8, IL-18, and TNF were not higher in critically ill COVID-19 patients than in critically ill patients admitted with ARDS or sepsis due to other causes in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 is likely unwarranted.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20089151

RESUMO

BackgroundSARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) testing remains the cornerstone of laboratory-based identification of patients with COVID-19. As the availability and speed of SARS-CoV-2 testing platforms improve, results are increasingly relied upon to inform critical decisions related to therapy, use of personal protective equipment, and workforce readiness. However, early reports of RT-PCR test performance have left clinicians and the public with concerns regarding the reliability of this predominant testing modality and the interpretation of negative results. In this work, two independent research teams report the frequency of discordant SARS-CoV-2 test results among initially negative, repeatedly tested patients in regions of the United States with early community transmission and access to testing. MethodsAll patients at the University of Washington (UW) and Stanford Health Care undergoing initial testing by nasopharyngeal (NP) swab between March 2nd and April 7th, 2020 were included. SARS-CoV-2 RT-PCR was performed targeting the N, RdRp, S, and E genes and ORF1ab, using a combination of Emergency Use Authorization laboratory-developed tests and commercial assays. Results through April 14th were extracted to allow for a complete 7-day observation period and an additional day for reporting. ResultsA total of 23,126 SARS-CoV-2 RT-PCR tests (10,583 UW, 12,543 Stanford) were performed in 20,912 eligible patients (8,977 UW, 11,935 Stanford) undergoing initial testing by NP swab; 626 initially test-negative patients were re-tested within 7 days. Among this group, repeat testing within 7 days yielded a positive result in 3.5% (4.3% UW, 2.8% Stanford) of cases, suggesting an initial false negative RT-PCR result; the majority (96.5%) of patients with an initial negative result who warranted reevaluation for any reason remained negative on all subsequent tests performed within this window. ConclusionsTwo independent research teams report the similar finding that, among initially negative patients subjected to repeat SARS-CoV-2 RT-PCR testing, the occurrence of a newly positive result within 7 days is uncommon. These observations suggest that false negative results at the time of initial presentation do occur, but potentially at a lower frequency than is currently believed. Although it is not possible to infer the clinical sensitivity of NP SARS-CoV-2 RT-PCR testing using these data, they may be used in combination with other reports to guide the use and interpretation of this common testing modality.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20069930

RESUMO

There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2. Here, we apply single-cell RNA sequencing (scRNA-seq) to peripheral blood mononuclear cells (PBMCs) of 7 patients hospitalized with confirmed COVID-19 and 6 healthy controls. We identify substantial reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene (ISG) signature, HLA class II downregulation, and a novel B cell-derived granulocyte population appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines, suggesting that circulating leukocytes do not significantly contribute to the potential COVID-19 cytokine storm. Collectively, we provide the most thorough cell atlas to date of the peripheral immune response to severe COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...