Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 9(390)2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515334

RESUMO

Diaphragmatic weakness is a feature of heart failure (HF) associated with dyspnea and exertional fatigue. Most studies have focused on advanced stages of HF, leaving the cause unresolved. The long-standing theory is that pulmonary edema imposes a mechanical stress, resulting in diaphragmatic remodeling, but stable HF patients rarely exhibit pulmonary edema. We investigated how diaphragmatic weakness develops in two mouse models of pressure overload-induced HF. As in HF patients, both models had increased eupneic respiratory pressures and ventilatory drive. Despite the absence of pulmonary edema, diaphragmatic strength progressively declined during pressure overload; this decline correlated with a reduction in diaphragm cross-sectional area and preceded evidence of muscle weakness. We uncovered a functional codependence between angiotensin II and ß-adrenergic (ß-ADR) signaling, which increased ventilatory drive. Chronic overdrive was associated with increased PERK (double-stranded RNA-activated protein kinase R-like ER kinase) expression and phosphorylation of EIF2α (eukaryotic translation initiation factor 2α), which inhibits protein synthesis. Inhibition of ß-ADR signaling after application of pressure overload normalized diaphragm strength, Perk expression, EIF2α phosphorylation, and diaphragmatic cross-sectional area. Only drugs that were able to penetrate the blood-brain barrier were effective in treating ventilatory overdrive and preventing diaphragmatic atrophy. These data provide insight into why similar drugs have different benefits on mortality and symptomatology, despite comparable cardiovascular effects.


Assuntos
Insuficiência Cardíaca/terapia , Debilidade Muscular/fisiopatologia , Angiotensina II/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Diafragma/metabolismo , Diafragma/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Insuficiência Cardíaca/fisiopatologia , Pulmão/metabolismo , Masculino , Camundongos , Debilidade Muscular/metabolismo , Fosforilação/fisiologia , Respiração , Transdução de Sinais/fisiologia
2.
Appl Physiol Nutr Metab ; 42(6): 647-655, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177704

RESUMO

Tre-2/USP6, BUB2, cdc16 domain family, member 1 (TBC1D1), a Rab-GTPase activating protein, is a paralogue of AS160, and has been implicated in the canonical insulin-signaling cascade in peripheral tissues. More recently, TBC1D1 was identified in rat and human pancreatic islets; however, the islet function of TBC1D1 remains not fully understood. We examined the role of TBC1D1 in glucose homeostasis and insulin secretion utilizing a rat knockout (KO) model. Chow-fed TBC1D1 KO rats had improved insulin action but impaired glucose-tolerance tests (GTT) and a lower insulin response during an intraperitoneal GTT compared with wild-type (WT) rats. The in vivo data suggest there may be an islet defect. Glucose-stimulated insulin secretion was higher in isolated KO rat islets compared with WT animals, suggesting TBC1D1 is a negative regulator of insulin secretion. Moreover, KO rats displayed reduced ß-cell mass, which likely accounts for the impaired whole-body glucose homeostasis. This ß-cell mass reduction was associated with increased active caspase 3, and unaltered Ki67 or urocortin 3, suggesting the induction of apoptosis rather than decreased proliferation or dedifferentiation may account for the decline in islet mass. A similar phenotype was observed in TBC1D1 heterozygous animals, highlighting the sensitivity of the pancreas to subtle reductions in TBC1D1 protein. An 8-week pair-fed high-fat diet did not further alter ß-cell mass or apoptosis in KO rats, suggesting that dietary lipids per se, do not lead to a further impairment in glucose homeostasis. The present study establishes a fundamental role for TBC1D1 in maintaining in vivo ß-cell mass.


Assuntos
Glicemia/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Homeostase , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Animais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Proteínas/genética , Ratos , Transdução de Sinais , Urocortinas/genética , Urocortinas/metabolismo
3.
J Appl Physiol (1985) ; 119(11): 1347-54, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26472868

RESUMO

The purpose of this investigation was to determine whether exercise-induced increases in adipose tissue interleukin 6 (IL-6) signaling occurred as part of a larger proinflammatory response to exercise and whether the induction of IL-6 signaling with acute exercise was altered in trained mice in parallel with changes in the IL-6 receptor complex. Sedentary and trained C57BL/6J mice were challenged with an acute bout of exercise. Adipose tissue and plasma were collected immediately and 4 h afterward and analyzed for changes in indices of IL-6 signaling, circulating IL-6, markers of adipose tissue inflammation, and expression/content of IL-6 receptor and glycoprotein 130 (gp130). In untrained mice, IL-6 mRNA increased immediately after exercise, and increases in indices of IL-6 signaling were increased 4 h after exercise in epididymal, but not inguinal adipose tissue. This occurred independent of increases in plasma IL-6 and alterations in markers of inflammation. When compared with untrained mice, in trained mice, acute exercise induced the expression of gp130 and IL-6 receptor alpha (IL-6Rα), and training increased the protein content of these. Acute exercise induced the expression, and training increased the protein content, of glycoprotein 130 and IL-6Rα and was associated with a more rapid increase in markers of IL-6 signaling in epididymal adipose tissue from trained compared with untrained mice. The ability of exogenous IL-6 to increase phosphorylation of STAT3 was similar between groups. Our findings demonstrate that acute exercise increases IL-6 signaling in a depot-dependent manner, likely through an autocrine/paracrine mechanism. This response is initiated more rapidly after exercise in trained mice, potentially as a result of increases in IL-6Rα and gp130.


Assuntos
Tecido Adiposo/fisiopatologia , Inflamação/fisiopatologia , Interleucina-6 , Condicionamento Físico Animal , Esforço Físico , Transdução de Sinais , Tecido Adiposo/metabolismo , Animais , Receptor gp130 de Citocina/metabolismo , Epididimo/metabolismo , Ácidos Graxos não Esterificados/sangue , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptores de Interleucina-6 , Fator de Transcrição STAT3/metabolismo , Comportamento Sedentário
4.
Am J Physiol Regul Integr Comp Physiol ; 309(7): R780-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246509

RESUMO

The obesity epidemic is considered one of the most serious public health problems of the modern world. Physical therapy is the most accessible form of treatment; however, compliance is a major obstacle due to exercise intolerance and dyspnea. Respiratory muscle atrophy is a cause of dyspnea, yet little is known of obesity-induced respiratory muscle dysfunction. Our objective was to investigate whether obesity-induced skeletal muscle wasting occurs in the diaphragm, the main skeletal muscle involved in inspiration, using the Zucker diabetic fatty (ZDF) rat. After 14 wk, ZDF rats developed obesity, hyperglycemia, and insulin resistance, compared with lean controls. Hemodynamic analysis revealed ZDF rats have impaired cardiac relaxation (P = 0.001) with elevated end-diastolic pressure (P = 0.006), indicative of diastolic dysfunction. Assessment of diaphragm function revealed weakness (P = 0.0296) in the absence of intrinsic muscle impairment in ZDF rats. Diaphragm morphology revealed increased fibrosis (P < 0.0001), atrophy (P < 0.0001), and reduced myosin heavy-chain content (P < 0.001), compared with lean controls. These changes are accompanied by activation of the myostatin signaling pathway with increased serum myostatin (P = 0.017), increased gene expression (P = 0.030) in the diaphragm and retroperitoneal adipose (P = 0.033), and increased SMAD2 phosphorylation in the diaphragm (P = 0.048). Here, we have confirmed the presence of respiratory muscle atrophy and weakness in an obese, diabetic model. We have also identified a pathological role for myostatin signaling in obesity, with systemic contributions from the adipose tissue, a nonskeletal muscle source. These findings have significant implications for future treatment strategies of exercise intolerance in an obese, diabetic population.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Debilidade Muscular/fisiopatologia , Músculos Respiratórios/fisiopatologia , Animais , Diabetes Mellitus Experimental/complicações , Hemodinâmica , Resistência à Insulina , Masculino , Debilidade Muscular/patologia , Miostatina/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Zucker , Músculos Respiratórios/patologia , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Regulação para Cima
5.
J Physiol ; 592(12): 2519-33, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639481

RESUMO

Alterations in lipid metabolism within the heart may have a causal role in the establishment of diabetic cardiomyopathy; however, this remains equivocal. Therefore, in the current study we determined cardiac mitochondrial bioenergetics in ZDF rats before overt type 2 diabetes and diabetic cardiomyopathy developed. In addition, we utilized resveratrol, a compound previously shown to improve, prevent or reverse cardiac dysfunction in high-fat-fed rodents, as a tool to potentially recover dysfunctions within mitochondria. Fasting blood glucose and invasive left ventricular haemodynamic analysis confirmed the absence of type 2 diabetes and diabetic cardiomyopathy. However, fibrosis was already increased (P < 0.05) ∼70% in ZDF rats at this early stage in disease progression. Assessments of mitochondrial ADP and pyruvate respiratory kinetics in permeabilized fibres from the left ventricle revealed normal electron transport chain function and content. In contrast, the apparent Km to palmitoyl-CoA (P-CoA) was increased (P < 0.05) ∼60%, which was associated with an accumulation of intracellular triacylgycerol, diacylglycerol and ceramide species. In addition, the capacity for mitochondrial reactive oxygen species emission was increased (P < 0.05) ∼3-fold in ZDF rats. The provision of resveratrol reduced fibrosis, P-CoA respiratory sensitivity, reactive lipid accumulation and mitochondrial reactive oxygen species emission rates. Altogether the current data support the supposition that a chronic dysfunction within mitochondrial lipid-supported bioenergetics contributes to the development of diabetic cardiomyopathy, as this was present before overt diabetes or cardiac dysfunction. In addition, we show that resveratrol supplementation prevents these changes, supporting the belief that resveratrol is a potent therapeutic approach for preventing diabetic cardiomyopathy.


Assuntos
Cardiotônicos/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fibrose , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/metabolismo , Palmitoil Coenzima A/metabolismo , Ratos Zucker , Resveratrol , Função Ventricular Esquerda/efeitos dos fármacos
6.
Obesity (Silver Spring) ; 22(7): 1632-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24500776

RESUMO

OBJECTIVE: The effects of the proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone (ROSI) on the transforming growth factor (TGF)-ß/SMAD signaling pathway in white adipose tissue (WAT) of diabetic rats were assessed. METHODS: Six-week-old, male ZDF rats were fed a chow diet with (ZDF ROSI) or without (ZDF chow) ROSI (diet, 100 mg/kg) for 6 weeks. Subcutaneous (scWAT) and retroperitoneal (rpWAT) adipose tissues were excised to quantify the protein content/phosphorylation. RESULTS: ZDF ROSI animals showed enhanced glucose tolerance and mitochondrial protein content in both depots. The protein content of enzymes involved in fatty acid handling was increased in scWAT of ZDF ROSI animals. ZDF ROSI exhibited decreased phosphorylation of SMAD2 and SMAD3 exclusively in scWAT, along with increases in inhibitory SMAD7 and the E3 ubiquitin ligase SMURF2. In contrast, ROSI increased the protein content of SMAD4, TGF-ß receptor I and II, and SMAD Anchor for Receptor Activation in scWAT. CONCLUSIONS: For the first time, the fact that ROSI inhibits SMAD2 and SMAD3 signaling in a depot-specific manner in diabetic rats was demonstrated. In scWAT, ROSI reduced SMAD2 and SMAD3 phosphorylation, likely through the inhibitory actions of SMAD7 and SMURF2. Induction of proximal components of the SMAD pathway may constitute a feedback mechanism to counteract ROSI-induced lipid synthesis in scWAT.


Assuntos
Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Experimental/metabolismo , PPAR gama/agonistas , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Tiazolidinedionas/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Masculino , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Zucker , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Rosiglitazona , Transdução de Sinais/fisiologia , Proteína Smad2/efeitos dos fármacos , Proteína Smad3/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 305(5): R542-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824959

RESUMO

Resveratrol (RSV) is a polyphenolic compound suggested to have anti-diabetic properties. Surprisingly, little is known regarding the effects of RSV supplementation on adipose tissue (AT) metabolism in vivo. The purpose of this study was to assess the effects of RSV on mitochondrial content and respiration, glyceroneogenesis (GNG), and adiponectin secretion in adipose tissue from Zucker diabetic fatty (ZDF) rats. Five-week-old ZDF rats were fed a chow diet with (ZDF RSV) or without (ZDF chow) RSV (200 mg/kg body wt) for 6 wk. Changes in adipose tissue metabolism were assessed in subcutaneous (scAT) and intra-abdominal [retroperitoneal (rpWAT), epididymal (eWAT)] adipose tissue depots. ZDF RSV rats showed lower fasting glucose and higher circulating adiponectin, as well as lower glucose area under the curve during intraperitoneal glucose and insulin tolerance tests than ZDF chow. [¹4C]pyruvate incorporation into triglycerides and adiponectin secretion were higher in scAT from ZDF RSV rats, concurrent with increases in adipose tissue triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and the phosphorylation of pyruvate dehydrogenase-E1α (PDH) (Ser293) protein content in this depot. Moreover, uncoupled mitochondrial respiration and complex I and II-supported respiration were increased in both scAT and rpWAT, which correlated with increases in cytochrome c oxidase subunit IV (COX4) protein content. In vitro treatment of scAT with RSV (50 µmol/l; 24 h) induced pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) mRNA expression. Collectively, these data demonstrate that RSV can induce adipose tissue mitochondrial biogenesis in parallel with increases in GNG and adiponectin secretion.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Diabetes Mellitus/dietoterapia , Diabetes Mellitus/fisiopatologia , Suplementos Nutricionais , Obesidade/dietoterapia , Obesidade/tratamento farmacológico , Estilbenos/administração & dosagem , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Masculino , Ratos , Ratos Zucker , Resveratrol , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...