Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 134928, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38943892

RESUMO

Serpentinite is a widespread rock type used worldwide as building material. Heavy metals like Ni in both the serpentinite products and serpentinite mining wastes pose potential environmental and health issues. This work devises an analytical protocol to identify and quantify the Ni speciation in the mineralogical matrix, through: i) bulk Ni quantification; ii) quantitative mineralogical and chemical analysis of each Ni-rich mineral; iii) comparison of bulk analysis results with the sum of each contribution from the Ni-rich minerals. As case study, two commercial serpentinites "Verde Giada" (VG) and "Verde Vittoria" (VV) from Valmalenco (Northern Italy) were analysed by ICP-MS, XRPD, TGA-MSEGA, SEM, TEM, EPMA, and micro-Raman spectroscopy. The bulk Ni content is 1500-1750 mg/kg and 1390-1620 mg/kg for VG and VV, respectively. The major minerals from XRPD and EPMA (antigorite, olivine, pyroxene, magnetite, brucite) account for 1094 and 1291 mg/kg of Ni for VG and VV, respectively. SEM/TEM and EPMA highlighted the presence of minor chrysotile, pentlandite, heazlewoodite, awaruite, rising the computed Ni to 1924 and 1761 mg/kg for VG and VV, in good agreement with bulk ICP-MS. This protocol provides robust results and can thus enhance the exposure assessment of Ni and eventually other naturally occurring hazardous metals.

2.
Waste Manag ; 175: 339-347, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241823

RESUMO

The constantly increasing demand of Rare Earth Elements (REEs) made them to be part of the so-called "critical elements" indispensable for the energy transition. The monopoly of only a few countries, the so-called balance problem between demand and natural abundance, and the need to limit the environmental costs of their mining, stress the necessity of a recycling policy of these elements. Different methods have been tested for REEs recovery. Despite the well-known ion-exchange properties of zeolites, just few preliminary works investigated their application for REEs separation and recycle. In this work we present a double ion exchange experiment on a NH4-13X zeolite, aimed at the recovery of different REEs from solutions mimicking the composition of liquors obtained from the leaching of spent fluorescent lamps. The results showed that the zeolite was able to exchange all the REEs tested, but the exchange capacity was different: despite Y being the more concentrated REE in the solutions, the cation exchange was lower than less concentrated ones (16 atoms p.u.c. vs 21 atoms for Ce and La solutions), suggesting a possible selectivity. In order to recover REEs from the zeolite, a second exchange with an ammonium solution was performed. The analyses of the zeolites show that almost all of Ce and Eu remain in the zeolite, while nearly half of La and Y are released. This, once again, suggests a possible selective release of REEs and open the possibility for a recovery process in which Rare Earths can be effectively separated.


Assuntos
Utensílios Domésticos , Metais Terras Raras , Zeolitas , Metais Terras Raras/análise , Mineração , Reciclagem
3.
Chemosphere ; 345: 140400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863212

RESUMO

Highly efficient, separable, and stable magnetic iron-based-photocatalysts produced from ultra-stable Y (USY) zeolite were applied, for the first time, to the photo-Fenton removal of phenol under solar light. USY Zeolite with a Si/Al molar ratio of 385 was impregnated under vacuum with an aqueous solution of Fe2+ ions and thermally treated (500-750 °C) in a reducing atmosphere. Three catalysts, Fe-USY500°C-2h, Fe-USY600°C-2h and Fe-USY750°C-2h, containing different amounts of reduced iron species entrapped in the zeolitic matrix, were obtained. The catalysts were thoroughly characterized by absorption spectrometry, X-ray powder diffraction with synchrotron source, followed by Rietveld analysis, X-ray photoelectron spectroscopy, N2 adsorption/desorption at -196 °C, high-resolution transmission electron microscopy and magnetic measurements at room temperature. The catalytic activity was evaluated in a recirculating batch photoreactor irradiated by solar light with online analysis of evolved CO2. Photo-Fenton results showed that the catalyst obtained by thermal treatment at 500 °C for 2 h under a reducing atmosphere (FeUSY-500°C-2h) was able to completely mineralize phenol in 120 min of irradiation time at pH = 4 owing to the presence of a higher content of entrapped nano-sized magnetite particles. The latter promotes the generation of hydroxyl radicals in a more efficient way than the Fe-USY catalysts prepared at 600 and 750 °C because of the higher Fe3O4 content in ultra-stable Y zeolite treated at 500 °C. The FeUSY-500°C-2h catalyst was recovered from the treated water through magnetic separation and reused five times without any significant worsening of phenol mineralization performances. The characterization of the FeUSY-500°C-2h after the photo-Fenton process demonstrated that it was perfectly stable during the reaction. The optimized catalyst was also effective in the mineralization of phenol in tap water. Finally, a possible photo-Fenton mechanism for phenol mineralization was assessed based on experimental tests carried out in the presence of scavenger molecules, demonstrating that hydroxyl radicals play a major role.


Assuntos
Fenol , Zeolitas , Fenol/química , Ferro/química , Fenóis , Água , Peróxido de Hidrogênio/química , Catálise
4.
Environ Sci Pollut Res Int ; 29(43): 65176-65184, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35478397

RESUMO

The increasing rare earth elements' (REE) demand to meet the market request and the current political scenario show that it is essential to find good solutions to recover these elements from waste (both industrial and mining). Zeolites are microporous materials with high cation exchange capacity, up to now only little investigated for REE recycle. Here, we propose the use of NH4+-exchanged zeolite L for Ce recovery from a very diluted solution (0.002 M), mimicking the Ce3+ concentration of the liquors deriving from the leaching of spent catalysts. The aim of this work is twofold: (i) to investigate the exploitability of zeolite L as cation exchanger in the Ce recovery; and (ii) to determine the best working conditions. The investigated process consists of a coupled cation exchange: (1) in the first exchange the NH4+ cations - present in the zeolite porosities - are exchanged with the Ce3+ ions in the solution; and (2) in the second experiment, the Ce3+ trapped into the zeolite is recovered through a further exchange with NH4. The best working conditions for Ce3+ exchange of NH4-zeolite L are: batch system, liquid/solid ratio equal to 90 mL/g and 180 mL/g, 24 h of contact at 25 °C. The resulting Ce adsorption capacity (qt) is equal to ~25 mg/g and ~39 mg/g and the removal efficiency 100% and 77% for the two tested liquid/solid ratios, respectively. The kinetics was proved to be fast and consistent with industrial timing; no energy cost for temperature setting is required; and the acid pH (~4) of the solutions does not affect the zeolite structure stability and its exchange performance. It has been demonstrated that the zeolite framework is not affected by the exchange so that the same absorbent material can be employed many times.

5.
Phys Chem Chem Phys ; 23(36): 20541-20552, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505580

RESUMO

In this study the absorption of glycine, α-alanine and ß-alanine amino acids into the pores of the synthetic zeolite Na-mordenite was investigated with the aim of: (i) evaluating the effectiveness of the MOR framework type in amino acid adsorption (via vapor and aqueous loading); (ii) understanding the host-guest and guest-guest interactions to possibly design a tailor made material and a loading procedure able to maximize the amino acid adsorption; (iii) studying the effect of pressure on the adsorbed amino acids such as, for instance, possible amino acid condensation. The structural characterization, carried out with the combination of diffractometric and infrared spectroscopy analyses, shows that MOR can adsorb amino acids, which are found both in protonated/deprotonated (possibly also generating zwitterions) form. Vapor loading is ineffective for α-alanine, while it is effective in ß-alanine and glycine adsorption, even if using different loading degrees. The shape and size of MOR channels make this zeolite suitable to accommodate a peptide. In a glycine loaded sample some molecules condensate to form cyclic dimers, while linear oligomers are detected only in a ß-alanine MOR hybrid. The sample loaded with α-L-alanine from aqueous solution does not show the presence of amide bond signals, indicating that the molecules are mostly hosted in zwitterionic form in Na-MOR channels. The application of external baric stimuli does not induce substantial modifications in the structure of the glycine loaded zeolite; this result may be explained by the low number of molecules hosted in the channels. The amino acid amount within the zeolite pores is the most important reactivity parameter and an increased loading could induce chemical modifications.


Assuntos
Silicatos de Alumínio/química , Aminoácidos/química , Zeolitas/química , Cápsulas , Estrutura Molecular
6.
ACS Appl Mater Interfaces ; 13(23): 27237-27244, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34081853

RESUMO

Recently, filling zeolites with gaseous hydrocarbons at high pressures in diamond anvil cells has been carried out to synthesize novel polymer-guest/zeolite-host nanocomposites with potential, intriguing applications, although the small amount of materials, 10-7 cm3, severely limited true technological exploitation. Here, liquid phenylacetylene, a much more practical reactant, was polymerized in the 12 Å channels of the aluminophosphate Virginia Polytechnic Institute-Five (VFI) at about 0.8 GPa and 140 °C, with large volumes in the order of 0.6 cm3. The resulting polymer/VFI composite was investigated by synchrotron X-ray diffraction and optical and 1H, 13C, and 27Al nuclear magnetic resonance spectroscopy. The materials, consisting of disordered π-conjugated polyphenylacetylene chains in the pores of VFI, were deposited on quartz crystal microbalances and tested as gas sensors. We obtained promising sensing performances to water and butanol vapors, attributed to the finely tuned nanostructure of the composites. High-pressure synthesis is used here to obtain an otherwise unattainable true technological material.

7.
Molecules ; 25(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375316

RESUMO

An overview of all the studies on high-pressure intrusion-extrusion of LiCl aqueous solutions in hydrophobic pure silica zeolites (zeosils) for absorption and storage of mechanical energy is presented. Operational principles of heterogeneous lyophobic systems and their possible applications in the domains of mechanical energy storage, absorption, and generation are described. The intrusion of LiCl aqueous solutions instead of water allows to considerably increase energetic performance of zeosil-based systems by a strong rise of intrusion pressure. The intrusion pressure increases with the salt concentration and depends considerably on zeosil framework. In the case of channel-type zeosils, it rises with the decrease of pore opening diameter, whereas for cage-type ones, no clear trend is observed. A relative increase of intrusion pressure in comparison with water is particularly strong for the zeosils with narrow pore openings. The use of highly concentrated LiCl aqueous solutions instead of water can lead to a change of system behavior. This effect seems to be related to a lower formation of silanol defects under intrusion of solvated ions and a weaker interaction of the ions with silanol groups of zeosil framework. The influence of zeosil nanostructure on LiCl aqueous solutions intrusion-extrusion is also discussed.


Assuntos
Cloreto de Lítio/química , Pressão , Dióxido de Silício/química , Zeolitas/química , Algoritmos , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Tamanho da Partícula , Soluções , Água/química
8.
Phys Chem Chem Phys ; 22(9): 5178-5187, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32083620

RESUMO

The high pressure intrusion-extrusion process of different electrolyte aqueous solutions (NaCl and CaCl2, 2 M and 3 M) in a hydrophobic pure-silica LTA zeolite was investigated for energetic purposes by means of in situ X-ray powder diffraction, porosimeter tests, thermogravimetric analysis and NMR spectroscopy. The intrusion pressure of the saline solutions was proved to be higher than that of pure water, with the highest value measured for CaCl2, thus increasing the energetic performance of the system. The intrusion of NaCl solutions was irreversible (bumper behavior), whereas that of CaCl2 solutions is partially reversible (shock absorber behavior). The structural investigation allowed interpreting these results on the basis of the different intrusion mechanisms, in turn induced by the different nature of the cations present in the electrolyte solutions. When Si-LTA is intruded by NaCl solution, firstly H2O molecules penetrate the pores, leading to higher silanol defect formation followed by the solvated ions. With CaCl2, instead, due to a higher solvation enthalpy of Ca2+, a higher pressure is required for intrusion, and both H2O and ions penetrate at the same pressure. The structural refinements demonstrate (i) a different arrangement of the extraframework species in the two systems, (ii) the intrusion of the salt solutions occurs through strong desolvation of the ions and (iii) the salt/H2O ratios of the intruded species are higher than those of the starting electrolyte solutions.

9.
Am Mineral ; 103(11): 1741-1748, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31439963

RESUMO

In this paper, we report the results of the first study focused on the thermal stability and dehydration dynamics of the natural zeolite mineral ferrierite. A sample from Monastir, Sardinia [(Na0.56K1.19Mg2.02Ca0.52Sr0.14) (Al6.89Si29.04)O72·17.86H2O; a = 19.2241(3) Å; b = 14.1563(2) Å; c = 7.5106(1) Å, V = 2043.95(7) Å3] was investigated by thermogravimetric analysis and in-situ synchrotron X-ray powder diffraction. Thermogravimetric data show that H2O release begins already in the range 50-100 °C and is complete at ~600 °C. The results of the structure refinements performed in Immm space group by Rietveld analysis with data collected up to 670 °C show that ferrierite belongs to the group of zeolites that do not undergo phase transitions. Upon heating to 670 °C, ferrierite behaves as a non-collapsible structure displaying only a slight contraction of the unit-cell volume (ΔV = -3%). The unit-cell parameter reductions are anisotropic, more pronounced for a than for b and c (Δa = -1.6%; Δb = -0.76%; Δc = -0.70%). This anisotropic response to a temperature increase is interpreted as due to the presence in the ferrierite framework of five-membered ring chains of SiO4 tetrahedra, which impart a higher structural rigidity along b and c. Upon dehydration we observe: (1) the gradual H2O loss, beginning with the molecules hosted in the 10MR channel, is almost complete at 670 °C, in good agreement with the TG data; (2) as a consequence of the decreased H2O content, Mg and K migrate from their original positions, moving from the center of the 10MR channel toward the walls to coordinate the framework oxygen atoms. The observation of transmission electron microscopy selected-area electron diffraction patterns revealed defective crystals with an occasional and moderate structural disorder. Beyond providing information on the thermal stability and behavior of natural ferrierite, the results of this work have significant implications for possible technological applications. These data allow for comparison with the dehydration kinetics/mechanisms of the corresponding synthetic phases, clarifying the role played by framework and extra-framework species on the high-temperature behavior of porous materials with ferrierite topology. Moreover, the information on the thermal behavior of natural ferrierite can be used to predict the energetic performances of analogous synthetic Si-pure counterparts, namely "zeosil-electrolyte" systems, under non-ambient conditions. Specifically, the very high thermal stability of ferrierite determined in this study, coupled with the baric behavior determined in other investigations, suggests that the "Si-FER-electrolyte" system may be an excellent candidate for use as an energy reservoir. Indeed, ferrierite exhibits the so-called "spring behavior," i.e., upon compression in water or in an electrolyte solution, it converts the mechanical energy into interfacial energy, and-when pressure is released-it can completely restore the supplied mechanical energy accumulated during the compression step.

10.
Angew Chem Int Ed Engl ; 56(8): 2105-2109, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28067444

RESUMO

Turning disorder into organization is a key issue in science. By making use of X-ray powder diffraction and modeling studies, we show herein that high pressures in combination with the shape and space constraints of the hydrophobic all-silica zeolite ferrierite separate an ethanol-water liquid mixture into ethanol dimer wires and water tetramer squares. The confined supramolecular blocks alternate in a binary two-dimensional (2D) architecture that remains stable upon complete pressure release. These results support the combined use of high pressures and porous networks as a viable strategy for driving the organization of molecules or nano-objects towards complex, pre-defined patterns relevant for the realization of novel functional nanocomposites.

11.
J Biomed Nanotechnol ; 13(3): 337-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29381292

RESUMO

In this work, metal-ceramic nanocomposites were obtained through short (up to 2 h) thermal treatments at relatively moderate temperatures (750­800 °C) under a reducing atmosphere, using Fe-exchanged zeolite A as the precursor. The as-obtained materials were characterized by X-ray powder diffraction analysis, N2 adsorption at ­196 °C, and highresolution transmission electron microscopy. The results of these analyses showed that the nanocomposites consisted of a dispersion of metallic Fe nanoparticles within a porous ceramic matrix, mainly based on amorphous silica and alumina. These nanocomposites were magnetically characterized, and their magnetic response was studied. Finally, the obtained metal-ceramic nanocomposite materials were used in the separation of Escherichia coli DNA from a crude cell lysate. The results of the DNA separation experiments showed that the obtained materials could perform this type of separation.


Assuntos
DNA Bacteriano/isolamento & purificação , DNA Bacteriano/efeitos da radiação , Separação Imunomagnética/métodos , Nanocompostos/química , Nanocompostos/ultraestrutura , Ultrafiltração/métodos , Zeolitas/química , DNA Bacteriano/química , Campos Magnéticos , Teste de Materiais , Ligas Metalo-Cerâmicas/química , Nanocompostos/efeitos da radiação , Nanoporos/ultraestrutura , Tamanho da Partícula , Porosidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-24892591

RESUMO

This is a comparative study on the high-pressure behavior of microporous materials with an MFI framework type (i.e. natural mutinaite, ZSM-5 and the all-silica phase silicalite-1), based on in-situ experiments in which penetrating and non-penetrating pressure-transmitting media were used. Different pressure-induced phenomena and deformation mechanisms (e.g. pressure-induced over-hydration, pressure-induced amorphization) are discussed. The influence of framework and extra-framework composition and of the presence of silanol defects on the response to the high pressure of MFI-type zeolites is discussed.

13.
Appl Radiat Isot ; 68(12): 2246-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20656498

RESUMO

A repertory of Roman military bronze equipment (1st- 3rd century AD) found at the archaeological site of Thamusida (Rabat, Morocco) was analysed by non-destructive X-ray fluorescence and time of flight neutron diffraction (ToF-ND). Most objects are made of leaded alloys, where copper is combined with tin and/or zinc and, in six cases, to arsenic as well. A mixed technology was employed, making a limited use of "pure" semi-finished materials if compared with the large utilization of recycled materials (brass and bronze).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...