Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(6): 1716-1726, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37192389

RESUMO

Novel enzymatic methods are poised to become the dominant processes for de novo synthesis of DNA, promising functional, economic, and environmental advantages over the longstanding approach of phosphoramidite synthesis. Before this can occur, however, enzymatic synthesis methods must be parallelized to enable production of multiple DNA sequences simultaneously. As a means to this parallelization, we report a polymerase-nucleotide conjugate that is cleaved using electrochemical oxidation on a microelectrode array. The developed conjugate maintains polymerase activity toward surface-bound substrates with single-base control and detaches from the surface at mild oxidative voltages, leaving an extendable oligonucleotide behind. Our approach readies the way for enzymatic DNA synthesis on the scale necessary for DNA-intensive applications such as DNA data storage or gene synthesis.


Assuntos
DNA Nucleotidilexotransferase , Nucleotídeos , DNA Nucleotidilexotransferase/genética , DNA , Oligonucleotídeos , Sequência de Bases
2.
Genes (Basel) ; 11(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963235

RESUMO

Enzymatic oligonucleotide synthesis methods based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) promise to enable the de novo synthesis of long oligonucleotides under mild, aqueous conditions. Intermediates with a 3' terminal structure (hairpins) will inevitably arise during synthesis, but TdT has poor activity on these structured substrates, limiting its usefulness for oligonucleotide synthesis. Here, we described two parallel efforts to improve the activity of TdT on hairpins: (1) optimization of the concentrations of the divalent cation cofactors and (2) engineering TdT for enhanced thermostability, enabling reactions at elevated temperatures. By combining both of these improvements, we obtained a ~10-fold increase in the elongation rate of a guanine-cytosine hairpin.


Assuntos
DNA Nucleotidilexotransferase/química , DNA/síntese química , Animais , DNA/química , DNA Nucleotidilexotransferase/genética , Estabilidade Enzimática/genética , Camundongos , Engenharia de Proteínas , Especificidade por Substrato
3.
Nat Biotechnol ; 36(7): 645-650, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29912208

RESUMO

Oligonucleotides are almost exclusively synthesized using the nucleoside phosphoramidite method, even though it is limited to the direct synthesis of ∼200 mers and produces hazardous waste. Here, we describe an oligonucleotide synthesis strategy that uses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT). Each TdT molecule is conjugated to a single deoxyribonucleoside triphosphate (dNTP) molecule that it can incorporate into a primer. After incorporation of the tethered dNTP, the 3' end of the primer remains covalently bound to TdT and is inaccessible to other TdT-dNTP molecules. Cleaving the linkage between TdT and the incorporated nucleotide releases the primer and allows subsequent extension. We demonstrate that TdT-dNTP conjugates can quantitatively extend a primer by a single nucleotide in 10-20 s, and that the scheme can be iterated to write a defined sequence. This approach may form the basis of an enzymatic oligonucleotide synthesizer.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Nucleosídeos/genética , Oligonucleotídeos/genética , DNA Nucleotidilexotransferase/química , DNA Nucleotidilexotransferase/genética , DNA Polimerase Dirigida por DNA/química , Nucleosídeos/química , Oligonucleotídeos/biossíntese , Oligonucleotídeos/química , Compostos Organofosforados/química
4.
Science ; 348(6241): 1361-5, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26089515

RESUMO

G protein-coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein α subunit Ras and helical domains-previously observed to separate widely upon receptor binding to expose the nucleotide-binding site-separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Fatores de Troca do Nucleotídeo Guanina/química , Receptores Acoplados a Proteínas G/química , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais
5.
Nature ; 503(7475): 295-9, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24121438

RESUMO

The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15 Å from the classical, 'orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Regulação Alostérica/fisiologia , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes
6.
Cell ; 152(3): 532-42, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374348

RESUMO

G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the ß(2)-adrenergic receptor (ß(2)AR), a prototypical GPCR. We labeled ß(2)AR with (13)CH(3)ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for ß(2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for ß(2)AR's ability to engage multiple signaling and regulatory proteins.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Conformação Proteica , Transdução de Sinais , Termodinâmica
7.
Nature ; 492(7429): 387-92, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23222541

RESUMO

Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2 Å resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family.


Assuntos
Receptor PAR-1/química , Motivos de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Ativação Enzimática/genética , Humanos , Hidrólise , Lactonas/química , Lactonas/farmacologia , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Infarto do Miocárdio/prevenção & controle , Conformação Proteica , Piridinas/química , Piridinas/farmacologia , Receptor PAR-1/agonistas , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Receptores de Trombina
8.
Nature ; 482(7386): 552-6, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22358844

RESUMO

Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G(q/11)-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G(i/o)-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.


Assuntos
Receptor Muscarínico M3/química , Receptor Muscarínico M3/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Sítio Alostérico , Animais , Células COS , Cristalização , Cristalografia por Raios X , Cinética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ensaio Radioligante , Ratos , Derivados da Escopolamina/química , Derivados da Escopolamina/metabolismo , Especificidade por Substrato , Brometo de Tiotrópio
9.
Proc Natl Acad Sci U S A ; 108(46): 18684-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22031696

RESUMO

A third of marketed drugs act by binding to a G-protein-coupled receptor (GPCR) and either triggering or preventing receptor activation. Although recent crystal structures have provided snapshots of both active and inactive functional states of GPCRs, these structures do not reveal the mechanism by which GPCRs transition between these states. Here we propose an activation mechanism for the ß(2)-adrenergic receptor, a prototypical GPCR, based on atomic-level simulations in which an agonist-bound receptor transitions spontaneously from the active to the inactive crystallographically observed conformation. A loosely coupled allosteric network, comprising three regions that can each switch individually between multiple distinct conformations, links small perturbations at the extracellular drug-binding site to large conformational changes at the intracellular G-protein-binding site. Our simulations also exhibit an intermediate that may represent a receptor conformation to which a G protein binds during activation, and suggest that the first structural changes during receptor activation often take place on the intracellular side of the receptor, far from the drug-binding site. By capturing this fundamental signaling process in atomic detail, our results may provide a foundation for the design of drugs that control receptor signaling more precisely by stabilizing specific receptor conformations.


Assuntos
Receptores Adrenérgicos beta 2/metabolismo , Sítio Alostérico , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X/métodos , Proteínas de Ligação ao GTP/química , Humanos , Ligantes , Modelos Biológicos , Conformação Molecular , Conformação Proteica , Prótons , Transdução de Sinais , Tirosina/química
10.
Proc Natl Acad Sci U S A ; 108(32): 13118-23, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21778406

RESUMO

How drugs bind to their receptors--from initial association, through drug entry into the binding pocket, to adoption of the final bound conformation, or "pose"--has remained unknown, even for G-protein-coupled receptor modulators, which constitute one-third of all marketed drugs. We captured this pharmaceutically critical process in atomic detail using the first unbiased molecular dynamics simulations in which drug molecules spontaneously associate with G-protein-coupled receptors to achieve final poses matching those determined crystallographically. We found that several beta blockers and a beta agonist all traverse the same well-defined, dominant pathway as they bind to the ß(1)- and ß(2)-adrenergic receptors, initially making contact with a vestibule on each receptor's extracellular surface. Surprisingly, association with this vestibule, at a distance of 15 Å from the binding pocket, often presents the largest energetic barrier to binding, despite the fact that subsequent entry into the binding pocket requires the receptor to deform and the drug to squeeze through a narrow passage. The early barrier appears to reflect the substantial dehydration that takes place as the drug associates with the vestibule. Our atomic-level description of the binding process suggests opportunities for allosteric modulation and provides a structural foundation for future optimization of drug-receptor binding and unbinding rates.


Assuntos
Preparações Farmacêuticas , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Alprenolol/química , Alprenolol/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dessecação , Espaço Extracelular/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/química , Termodinâmica
11.
Nature ; 469(7329): 236-40, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228876

RESUMO

G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human ß(2) adrenergic receptor (ß(2)AR) as a guide, we designed a ß(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent ß(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound ß(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5 Å resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 µs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Cristalização , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Agonismo Inverso de Drogas , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Procaterol/química , Procaterol/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
12.
Genes Dev ; 24(6): 537-42, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20194433

RESUMO

Estrogen-related receptor alpha (ERRalpha) and proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) play central roles in the transcriptional control of energy homeostasis, but little is known about factors regulating their activity. Here we identified the homeobox protein prospero-related homeobox 1 (Prox1) as one such factor. Prox1 interacts with ERRalpha and PGC-1alpha, occupies promoters of metabolic genes on a genome-wide scale, and inhibits the activity of the ERRalpha/PGC-1alpha complex. DNA motif analysis suggests that Prox1 interacts with the genome through tethering to ERRalpha and other factors. Importantly, ablation of Prox1 and ERRalpha have opposite effects on the respiratory capacity of liver cells, revealing an unexpected role for Prox1 in the control of energy homeostasis.


Assuntos
Metabolismo Energético , Proteínas de Homeodomínio/metabolismo , Receptores de Estrogênio/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Células Hep G2 , Proteínas de Homeodomínio/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Estrogênio/genética , Regulon/genética , Transativadores/genética , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética , Receptor ERRalfa Relacionado ao Estrogênio
13.
PLoS Genet ; 5(8): e1000590, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19680543

RESUMO

The human oxidative phosphorylation (OxPhos) system consists of approximately 90 proteins encoded by nuclear and mitochondrial genomes and serves as the primary cellular pathway for ATP biosynthesis. While the core protein machinery for OxPhos is well characterized, many of its assembly, maturation, and regulatory factors remain unknown. We exploited the tight transcriptional control of the genes encoding the core OxPhos machinery to identify novel regulators. We developed a computational procedure, which we call expression screening, which integrates information from thousands of microarray data sets in a principled manner to identify genes that are consistently co-expressed with a target pathway across biological contexts. We applied expression screening to predict dozens of novel regulators of OxPhos. For two candidate genes, CHCHD2 and SLIRP, we show that silencing with RNAi results in destabilization of OxPhos complexes and a marked loss of OxPhos enzymatic activity. Moreover, we show that SLIRP plays an essential role in maintaining mitochondrial-localized mRNA transcripts that encode OxPhos protein subunits. Our findings provide a catalogue of potential novel OxPhos regulators that advance our understanding of the coordination between nuclear and mitochondrial genomes for the regulation of cellular energy metabolism.


Assuntos
Biologia Computacional/métodos , Homeostase , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Mitocôndrias/química , Mitocôndrias/genética , Fosforilação Oxidativa , RNA/química , RNA/genética , RNA Mitocondrial , Proteínas de Ligação a RNA/genética
14.
Proc Natl Acad Sci U S A ; 106(12): 4689-94, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19258456

RESUMO

Fully understanding the mechanisms of signaling proteins such as G protein-coupled receptors (GPCRs) will require the characterization of their conformational states and the pathways connecting those states. The recent crystal structures of the beta(2)- and beta(1)-adrenergic receptors in a nominally inactive state constituted a major advance toward this goal, but also raised new questions. Although earlier biochemical observations had suggested that these receptors possessed a set of contacts between helices 3 and 6, known as the ionic lock, which was believed to form a molecular switch for receptor activation, the crystal structures lacked these contacts. The unexpectedly broken ionic lock has raised questions about the true conformation(s) of the inactive state and the role of the ionic lock in receptor activation and signaling. To address these questions, we performed microsecond-timescale molecular dynamics simulations of the beta(2)-adrenergic receptor (beta(2)AR) in multiple wild-type and mutant forms. In wild-type simulations, the ionic lock formed reproducibly, bringing the intracellular ends of helices 3 and 6 together to adopt a conformation similar to that found in inactive rhodopsin. Our results suggest that inactive beta(2)AR exists in equilibrium between conformations with the lock formed and the lock broken, whether or not the cocrystallized ligand is present. These findings, along with the formation of several secondary structural elements in the beta(2)AR loops during our simulations, may provide a more comprehensive picture of the inactive state of the beta-adrenergic receptors, reconciling the crystal structures with biochemical studies.


Assuntos
Receptores Adrenérgicos beta 2/química , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Mutação/genética , Estrutura Secundária de Proteína , Rodopsina/química , Homologia Estrutural de Proteína
15.
Nature ; 450(7170): 736-40, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046414

RESUMO

Transcriptional complexes that contain peroxisome-proliferator-activated receptor coactivator (PGC)-1alpha control mitochondrial oxidative function to maintain energy homeostasis in response to nutrient and hormonal signals. An important component in the energy and nutrient pathways is mammalian target of rapamycin (mTOR), a kinase that regulates cell growth, size and survival. However, it is unknown whether and how mTOR controls mitochondrial oxidative activities. Here we show that mTOR is necessary for the maintenance of mitochondrial oxidative function. In skeletal muscle tissues and cells, the mTOR inhibitor rapamycin decreased the gene expression of the mitochondrial transcriptional regulators PGC-1alpha, oestrogen-related receptor alpha and nuclear respiratory factors, resulting in a decrease in mitochondrial gene expression and oxygen consumption. Using computational genomics, we identified the transcription factor yin-yang 1 (YY1) as a common target of mTOR and PGC-1alpha. Knockdown of YY1 caused a significant decrease in mitochondrial gene expression and in respiration, and YY1 was required for rapamycin-dependent repression of those genes. Moreover, mTOR and raptor interacted with YY1, and inhibition of mTOR resulted in a failure of YY1 to interact with and be coactivated by PGC-1alpha. We have therefore identified a mechanism by which a nutrient sensor (mTOR) balances energy metabolism by means of the transcriptional control of mitochondrial oxidative function. These results have important implications for our understanding of how these pathways might be altered in metabolic diseases and cancer.


Assuntos
Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Transativadores/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Complexos Multiproteicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Transcrição YY1/deficiência , Fator de Transcrição YY1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...