Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Adv Exp Med Biol ; 1140: 1-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347039

RESUMO

Within the past years, we have witnessed a great improvement is mass spectrometry (MS) and proteomics approaches in terms of instrumentation, protein fractionation, and bioinformatics. With the current technology, protein identification alone is no longer sufficient. Both scientists and clinicians want not only to identify the proteins, but also to identify the protein's post-translational modifications (PTMs), protein isoforms, protein truncation, protein-protein interactions (PPI), and protein quantitation. Here, we describe the principle of MS and proteomics, and strategies to identify proteins, protein's PTMs, protein isoforms, protein truncation, PPIs, and protein quantitation. We also discuss the strengths and weaknesses within this field. Finally, in our concluding remarks we assess the role of mass spectrometry and proteomics in the scientific and clinical settings, in the near future. This chapter provides an introduction and overview for subsequent chapters that will discuss specific MS proteomic methodologies and their application to specific medical conditions. Other chapters will also touch upon areas that expand beyond proteomics, such as lipidomics and metabolomics.


Assuntos
Espectrometria de Massas , Proteômica , Biologia Computacional , Humanos , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional
2.
Adv Exp Med Biol ; 1140: 121-142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347045

RESUMO

Of the 25,000-30,000 human genes, about 2 % code for proteins. However, there are about 1-2 million protein entities. This is primarily due to alternative splicing, post-translational modifications (PTMs) or protein-protein interactions. Proteomics sets out to identify proteins, their sequence and known modifications as well as their quantitation in a biological sample for the purpose of understanding biological processes, protein cellular functions, and their physiological and pathological involvement in diseases.Proteins interact at the molecular level with other proteins, nucleic acids, lipids, carbohydrates and metabolites to perform numerous cellular activities. Protein complexes can consist of sets of more stably (stable PPIs) and less stably (transient PPIs) interacting proteins or combination of both. Here, we discuss the proteomics and non-proteomics approaches to study stable and transient PPIs.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteômica , Humanos
3.
Adv Exp Med Biol ; 1140: 199-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347049

RESUMO

There are only 30,000 human genes, which, according to the central dogma from biology, it means that there should be 30,000 mRNA and 30,000 proteins. However, there are at least 1-2 million protein entities that are expressed in a cell at a given time. This is primarily due to alternative splicing in different cells and tissues, which may lead to expression of different protein isoforms within one cell, but also different protein isoforms in different tissues. A new level of complexity of proteins and protein isoforms is then given by posttranslational modifications (PTMs) of proteins. Here, we discuss the PTMs in proteins and how they are identified by mass spectrometry and proteomics, with specific examples on identification of acetylation, phosphorylation, glycosylation, alkylation, hydroxinonenal-modification or assignment of intramolecular and intermolecular disulfide bridges.


Assuntos
Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteômica , Acetilação , Alquilação , Glicosilação , Humanos , Fosforilação
4.
Adv Exp Med Biol ; 1140: 417-433, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347062

RESUMO

Better understanding of central nervous system (CNS) molecules can include the identification of new molecules and their receptor systems. Discovery of novel proteins and elucidation of receptor targets can be accomplished using mass spectrometry (MS). We describe a case study of such a molecule, which our lab has studied using MS in combination with other protein identification techniques, such as immunohistochemistry and Western Blotting. This molecule is known as tumor differentiation factor (TDF), a recently-found protein secreted by the pituitary into the blood. TDF mRNA has been detected in brain; not heart, placenta, lung, liver, skeletal muscle, or pancreas. Currently TDF has an unclear function, and prior to our studies, its localization was only minimally understood, with no understanding of receptor targets. We investigated the distribution of TDF in the rat brain using immunohistochemistry (IHC) and immunofluorescence (IF). TDF protein was detected in pituitary and most other brain regions, in specific neurons but not astrocytes. We found TDF immunoreactivity in cultured neuroblastoma, not astrocytoma. These data suggest that TDF is localized to neurons, not to astrocytes. Our group also conducted studies to identify the TDF receptor (TDF-R). Using LC-MS/MS and Western blotting, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) as potential TDF-R candidates in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. These studies have combined directed protein identification techniques with mass spectrometry to increase our understanding of a novel protein that may have distinct actions as a hormone in the body and as a growth factor in the brain.


Assuntos
Proteínas do Tecido Nervoso/química , Espectrometria de Massas em Tandem , Animais , Western Blotting , Encéfalo , Diferenciação Celular , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Imuno-Histoquímica , Masculino , Ratos
5.
Adv Exp Med Biol ; 1140: 477-499, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347066

RESUMO

Mass spectrometry (MS) has been increasingly used to study central nervous system (CNS) disorders, including autism spectrum disorders (ASDs). The first studies of ASD using MS focused on the identification of external toxins, but current research is more directed at understanding endogenous protein changes that occur in ASD (ASD proteomics). This chapter focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using this technique, including genetic syndromes associated with autism such as fragile X syndrome (FXS) and Smith-Lemli-Opitz Syndrome (SLOS).


Assuntos
Transtorno do Espectro Autista/diagnóstico , Espectrometria de Massas , Síndrome do Cromossomo X Frágil/diagnóstico , Humanos , Proteômica , Síndrome de Smith-Lemli-Opitz/diagnóstico
6.
Adv Exp Med Biol ; 1140: 665-684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347078

RESUMO

Stilbenes represent a class of compounds with a common 1,2-diphenylethylene backbone that have shown extraordinary potential in the biomedical field. As the most well-known example, resveratrol proved to have anti-aging effects and significant potential in the fight against cardiovascular diseases and some types of cancer. Mass spectrometry is an analytical method of critical importance in all studies related to stilbenes that are important in the biomedical field. From the discovery of new natural compounds and mapping the grape metabolome up to advanced investigations of stilbenes' potential for the protection of human health in clinical studies, mass spectrometry has provided critical analytical information. In this review we focus on various approaches related to mass spectrometry for the detection of stilbenes-such as coupling with chromatographic separation methods and direct infusion-with presentation of some illustrative applications. Clearly, the potential of mass spectrometry for assisting in the discovery of new stilbenes of biomedical importance, elucidating their mechanisms of action and quantifying minute quantities in complex matrices is far from being exhausted.


Assuntos
Espectrometria de Massas , Estilbenos/análise , Vinho/análise , Humanos , Resveratrol
7.
Adv Exp Med Biol ; 1140: 753-769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347083

RESUMO

Mass spectrometry (MS) is the core for advanced methods in proteomic experiments. When effectively used, proteomics may provide extensive information about proteins and their post-translational modifications, as well as their interaction partners. However, there are also many problems that one can encounter during a proteomic experiment, including, but not limited to sample preparation, sample fractionation, sample analysis, data analysis & interpretation and biological significance. Here we discuss some of the problems that researchers should be aware of when performing a proteomic experiment.


Assuntos
Espectrometria de Massas , Proteínas/análise , Proteômica/métodos , Processamento de Proteína Pós-Traducional
9.
J Cell Mol Med ; 19(11): 2664-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26290361

RESUMO

In the last decades, prevalence of autism spectrum disorder (ASD) has been on the rise. However, clear aetiology is still elusive and improvements in early diagnosis are needed. To uncover possible biomarkers present in ASD, we used two-dimensional polyacrylamide gel electrophoresis and nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), to compare salivary proteome profiling of children with ASD and controls. A total of 889 spots were compared and only those spots with a fold change ≥1.7 and a P-value <0.05 or a fold change of ≥3.0 between ASD cases and controls were analysed by nanoLC-MS/MS. Alpha-amylase, CREB-binding protein, p532, Transferrin, Zn alpha2 glycoprotein, Zymogen granule protein 16, cystatin D and plasminogen were down-regulated in ASD. Increased expression of proto-oncogene Frequently rearranged in advanced T-cell lymphomas 1 (FRAT1), Kinesin family member 14, Integrin alpha6 subunit, growth hormone regulated TBC protein 1, parotid secretory protein, Prolactin-inducible protein precursor, Mucin-16, Ca binding protein migration inhibitory factor-related protein 14 (MRP14) was observed in individuals with ASD. Many of the identified proteins have previously been linked to ASD or were proposed as risk factors of ASD at the genetic level. Some others are involved in pathological pathways implicated in ASD causality such as oxidative stress, lipid and cholesterol metabolism, immune system disturbances and inflammation. These data could contribute to protein signatures for ASD presence, risk and subtypes, and advance understanding of ASD cause as well as provide novel treatment targets for ASD.


Assuntos
Transtorno do Espectro Autista , Eletroforese em Gel Bidimensional , Proteínas e Peptídeos Salivares/análise , Espectrometria de Massas em Tandem , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/metabolismo , Criança , Humanos , Proteoma , Proto-Oncogene Mas , Sensibilidade e Especificidade
10.
Retrovirology ; 12: 27, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25886562

RESUMO

BACKGROUND: The human genome contains multiple LTR elements including human endogenous retroviruses (HERVs) that together account for approximately 8-9% of the genomic DNA. At least 40 different HERV groups have been assigned to three major HERV classes on the basis of their homologies to exogenous retroviruses. Although most HERVs are silenced by a variety of genetic and epigenetic mechanisms, they may be reactivated by environmental stimuli such as exogenous viruses and thus may contribute to pathogenic conditions. The objective of this study was to perform an in-depth analysis of the influence of HIV-1 infection on HERV activity in different cell types. RESULTS: A retrovirus-specific microarray that covers major HERV groups from all three classes was used to analyze HERV transcription patterns in three persistently HIV-1 infected cell lines of different cellular origins and in their uninfected counterparts. All three persistently infected cell lines showed increased transcription of multiple class I and II HERV groups. Up-regulated transcription of five HERV taxa (HERV-E, HERV-T, HERV-K (HML-10) and two ERV9 subgroups) was confirmed by quantitative reverse transcriptase PCR analysis and could be reversed by knock-down of HIV-1 expression with HIV-1-specific siRNAs. Cells infected de novo by HIV-1 showed stronger transcriptional up-regulation of the HERV-K (HML-2) group than persistently infected cells of the same origin. Analysis of transcripts from individual members of this group revealed up-regulation of predominantly two proviral loci (ERVK-7 and ERVK-15) on chromosomes 1q22 and 7q34 in persistently infected KE37.1 cells, as well as in de novo HIV-1 infected LC5 cells, while only one single HML-2 locus (ERV-K6) on chromosome 7p22.1 was activated in persistently infected LC5 cells. CONCLUSIONS: Our results demonstrate that HIV-1 can alter HERV transcription patterns of infected cells and indicate a correlation between activation of HERV elements and the level of HIV-1 production. Moreover, our results suggest that the effects of HIV-1 on HERV activity may be far more extensive and complex than anticipated from initial studies with clinical material.


Assuntos
Retrovirus Endógenos/fisiologia , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Transcrição Gênica , Ativação Viral , Linhagem Celular , Retrovirus Endógenos/genética , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries
11.
J Infect Dis ; 212 Suppl 2: S98-S100, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25821225

RESUMO

Personal protective equipment (PPE) is an important part of worker protection during filovirus outbreaks. The need to protect against a highly virulent fluid-borne pathogen in the tropical environment imposes a heat stress on the wearer that is itself a safety risk. No evidence supports the choice of PPE employed in recent outbreaks, and standard testing procedures employed by the protective garment industry do not well simulate filovirus exposure. Further research is needed to determine the appropriate PPE for filoviruses and the heat stress that it imposes.


Assuntos
Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/prevenção & controle , Filoviridae/patogenicidade , Equipamento de Proteção Individual/virologia , Surtos de Doenças , Epidemias , Infecções por Filoviridae/virologia , Humanos
12.
Autism Res ; 8(3): 338-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626423

RESUMO

Autism spectrum disorder (ASD) prevalence is increasing, with current estimates at 1/68-1/50 individuals diagnosed with an ASD. Diagnosis is based on behavioral assessments. Early diagnosis and intervention is known to greatly improve functional outcomes in people with ASD. Diagnosis, treatment monitoring and prognosis of ASD symptoms could be facilitated with biomarkers to complement behavioral assessments. Mass spectrometry (MS) based proteomics may help reveal biomarkers for ASD. In this pilot study, we have analyzed the salivary proteome in individuals with ASD compared to neurotypical control subjects, using MS-based proteomics. Our goal is to optimize methods for salivary proteomic biomarker discovery and to identify initial putative biomarkers in people with ASDs. The salivary proteome is virtually unstudied in ASD, and saliva could provide an easily accessible biomaterial for analysis. Using nano liquid chromatography-tandem mass spectrometry, we found statistically significant differences in several salivary proteins, including elevated prolactin-inducible protein, lactotransferrin, Ig kappa chain C region, Ig gamma-1 chain C region, Ig lambda-2 chain C regions, neutrophil elastase, polymeric immunoglobulin receptor and deleted in malignant brain tumors 1. Our results indicate that this is an effective method for identification of salivary protein biomarkers, support the concept that immune system and gastrointestinal disturbances may be present in individuals with ASDs and point toward the need for larger studies in behaviorally-characterized individuals.


Assuntos
Transtorno do Espectro Autista/metabolismo , Proteoma/metabolismo , Proteômica/estatística & dados numéricos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Adolescente , Biomarcadores/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Espectrometria de Massas , Projetos Piloto
13.
Proteomics Clin Appl ; 9(1-2): 159-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25311756

RESUMO

Current directions in autism spectrum disorder (ASD) research may require moving beyond genetic analysis alone, based on the complexity of the disorder, heterogeneity and convergence of genetic alterations at the cellular/functional level. Mass spectrometry (MS) has been increasingly used to study CNS disorders, including ASDs. Proteomic research using MS is directed at understanding endogenous protein changes that occur in ASD. This review focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using MS, including fragile X syndrome (FXS) and Smith-Lemli-Opitz Syndrome (SLOS), genetic syndromes highly associated with ASD comorbidity.


Assuntos
Biomarcadores/metabolismo , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Animais , Humanos
14.
J Neural Transm (Vienna) ; 122 Suppl 1: S9-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24357051

RESUMO

The etiology and pathogenesis of many psychiatric disorders are unclear with many signaling pathways and complex interactions still unknown. Primary information provided from gene expression or brain activity imaging experiments is useful, but can have limitations. There is a current effort focusing on the discovery of diagnostic and prognostic proteomic potential biomarkers for psychiatric disorders. Despite this work, there is still no biological diagnostic test available for any mental disorder. Biomarkers may advance the care of psychiatric illnesses and have great potential to knowledge of psychiatric disorders but several drawbacks must be considered. Here, we describe the potential of proteomic biomarkers for better understanding and diagnosis of psychiatric disorders and current putative biomarkers for schizophrenia, depression, autism spectrum disorder and attention deficit/hyperactivity disorder.


Assuntos
Biomarcadores/metabolismo , Transtornos Mentais/metabolismo , Proteômica , Psiquiatria , Humanos
15.
Adv Exp Med Biol ; 806: 1-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952176

RESUMO

Within the past years, we have witnessed a great improvement in mass spectrometry (MS) and proteomics approaches in terms of instrumentation, protein fractionation, and bioinformatics. With the current technology, protein identification alone is no longer sufficient. Both scientists and clinicians want not only to identify proteins but also to identify the protein's posttranslational modifications (PTMs), protein isoforms, protein truncation, protein-protein interaction (PPI), and protein quantitation. Here, we describe the principle of MS and proteomics and strategies to identify proteins, protein's PTMs, protein isoforms, protein truncation, PPIs, and protein quantitation. We also discuss the strengths and weaknesses within this field. Finally, in our concluding remarks we assess the role of mass spectrometry and proteomics in scientific and clinical settings in the near future. This chapter provides an introduction and overview for subsequent chapters that will discuss specific MS proteomic methodologies and their application to specific medical conditions. Other chapters will also touch upon areas that expand beyond proteomics, such as lipidomics and metabolomics.


Assuntos
Espectrometria de Massas/métodos , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica/métodos
16.
Adv Exp Med Biol ; 806: 205-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952184

RESUMO

Of the 25,000-30,000 human genes, about 2 % code for proteins. However, there are about one to two million protein entities. This is primarily due to alternative splicing and post-translational modifications (PTMs). Identifying all these modifications in one proteome at a particular time point during development or during the transition from normal to cancerous cells is a great challenge to scientists. In addition, identifying the biological significance of all these modifications, as well as their nature, such as stable versus transient modifications, is an even more challenging. Furthermore, interaction of proteins and protein isoforms that have one or more stable or transient PTMs with other proteins and protein isoforms makes the study of proteins daunting and complex. Here we review some of the strategies to study proteins, protein isoforms, protein PTMs, and protein-protein interactions (PPIs). Our goal is to provide a thorough understanding of these proteins and their isoforms, PTMs and PPIs and to shed light on the biological significance of these factors.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Modificação Traducional de Proteínas , Proteômica/métodos , Animais , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
17.
Adv Exp Med Biol ; 806: 331-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952190

RESUMO

The zebrafish (Danio rerio) is frequently being used to investigate the genetics of human diseases as well as resulting pathologies. Ease of both forward and reverse genetic manipulation along with conservation of vertebrate organ systems and disease causing genes has made this system a popular model. Many techniques have been developed to manipulate the genome of zebrafish producing mutants in a vast array of genes. While genetic manipulation of zebrafish has progressed, proteomics have been under-utilized. This review highlights studies that have already been performed using proteomic techniques and as well as our initial proteomic work comparing changes to the proteome between the ascl1a-/- and WT intestine.


Assuntos
Genoma/fisiologia , Mucosa Intestinal/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Humanos , Mutação , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
Adv Exp Med Biol ; 806: 361-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952192

RESUMO

Stilbenes represent a class of compounds with a common 1,2-diphenylethylene backbone that have shown extraordinary potential in the biomedical field. As the most well-known example, resveratrol proved to have anti-aging effects and significant potential in the fight against cardiovascular diseases and some types of cancer. Mass spectrometry is an analytical method of critical importance in all studies related to stilbenes that are important in the biomedical field. From the discovery of new natural compounds and mapping the grape metabolome up to advanced investigations of stilbenes' potential for the protection of human health in clinical studies, mass spectrometry has provided critical analytical information. In this review we focus on various approaches related to mass spectrometry for the detection of stilbenes-such as coupling with chromatographic separation methods and direct infusion-with presentation of some illustrative applications. Clearly, the potential of mass spectrometry for assisting in the discovery of new stilbenes of biomedical importance, elucidating their mechanisms of action, and quantifying minute quantities in complex matrices is far from being exhausted.


Assuntos
Análise de Alimentos/métodos , Espectrometria de Massas , Estilbenos/análise , Vinho/análise , Humanos
19.
Adv Exp Med Biol ; 806: 399-408, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952194

RESUMO

Although mammography and treatment advances have led to declines in breast cancer mortality in the United States, breast cancer remains a major cause of morbidity and mortality. Breast cancer in young women is associated with increased mortality and current methods of detecting breast cancers in this group of women have known limitations. Tools for accurately assessing personal breast cancer risk in young women are needed to identify those women who would benefit the most from earlier intervention. Proteomic analysis of breast milk could identify biomarkers of breast cancer risk and provide a tool for identifying women at increased risk. A preliminary analysis of milk from four women provides a proof of concept for using breast milk to assess breast cancer risk.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Espectrometria de Massas/métodos , Leite Humano/metabolismo , Feminino , Humanos
20.
Adv Exp Med Biol ; 806: 409-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952195

RESUMO

The secretome includes all macromolecules secreted by cells, in particular conditions at defined times, allowing cell-cell communication. Cancer cell secretomes that are altered compared to normal cells have shown significant potential for elucidating cancer biology. Proteins of secretomes are secreted by various secretory pathways and can be studied using different methods. Cancer secretomes seem to play an important role in known hallmarks of cancers such as excessive proliferation, reduced apoptosis, immune invasion, angioneogenesis, alteration in energy metabolism, and development of resistance against anti-cancer therapy [1, 2]. If a significant role of an altered secretome can be identified in cancer cells, using advanced mass spectrometry-based techniques, this may allow researchers to screen and characterize the secretome proteins involved in cancer progression and open up new opportunities to develop new therapies. We aim to elaborate upon recent advances in cancer cell secretome analysis using different proteomics techniques. In this review, we highlight the role of the altered secretome in contributing to already recognized and emerging hallmarks of cancer and we discuss new challenges in the field of secretome analysis.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Apoptose , Proliferação de Células , Metabolismo Energético , Humanos , Invasividade Neoplásica , Neoplasias/patologia , Neovascularização Patológica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...