Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400339, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688862

RESUMO

Copper-exchanged ZSM-5 (Cu-ZSM-5) is a promising catalyst thanks to the Cu redox pair. A particular feature of this material consists in the presence of spontaneous isothermal oscillations which take place during N2O decomposition reaction, depending on the operating conditions. In the present work, a set of five Cu-ZSM-5 catalysts was synthesised by three procedures and three different copper precursor concentrations: i) wet impregnation, ii) single ion exchange, and iii) double ion exchange. Catalytic tests revealed that the ion-exchanged samples exhibit a low catalytic activity and no oscillatory behaviour, except for the twice-exchanged sample which achieves an average N2O conversion of 26 % at 400 °C. Conversely, the impregnated samples reach higher levels of N2O conversion (66 % for Cu5ZSM5_WI and 72 % for Cu10ZSM5_WI) and demonstrate a similar oscillating pattern. Further investigations disclosed that the most active catalysts, characterised by the presence of oscillatory behaviour, have more abundant and easily reducible copper species (ICP, EDX and H2-TPR) which interact better with the zeolitic support (FT-IR). Catalytic tests under a long time on stream (TOS) suggest that either self-organised patterns or deterministic chaos can be achieved during the reaction, depending on the operating conditions, such as temperature and contact time.

2.
ChemSusChem ; 14(1): 356-362, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33095501

RESUMO

Enabling green fabrication processes for energy storage devices is becoming a key aspect in order to achieve a sustainable fabrication cycle. Here, the focus was on the exploitation of the tragacanth gum, an exudated gum like arabic and karaya gums, as green binder for the preparation of carbon-based materials for electrochemical capacitors. The electrochemical performance of tragacanth (TRGC)-based electrodes was thoroughly investigated and compared with another water-soluble binder largely used in this field, sodium-carboxymethyl cellulose (CMC). Apart from the higher sustainability both in production and processing, TRGC exhibited a lower impact on the obstruction of pores in the final active material film with respect to CMC, allowing for more available surface area. This directly impacted the electrochemical performance, resulting in a higher specific capacitance and better rate capability. Moreover, the TRGC-based supercapacitor showed a superior thermal stability compared with CMC, with a capacity retention of about 80 % after 10000 cycles at 70 °C.

3.
ChemistryOpen ; 9(9): 903-912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908812

RESUMO

Different sol-gel synthesis methods were used to obtain four nanostructured mesoporous TiO2 samples for an efficient photocatalytic degradation of the emerging contaminant N-phenylurea under either simulated solar light (1 Sun) or UV light. Particularly, two TiO2 samples were obtained by means of as many template-assisted syntheses, whereas other two TiO2 samples were obtained by a greener template-free procedure, implying acidic conditions and, then, calcination at either 200 °C or 600 °C. In one case, anatase was obtained, whereas in the other three cases mixed crystalline phases were obtained. The four TiO2 samples were characterized by X-ray powder diffraction (followed by Rietveld analysis); Transmission Electron Microscopy; N2 adsorption/desorption at -196 °C; Diffuse Reflectance UV/Vis spectroscopy and ζ-potential measurements. A commercial TiO2 powder (i. e., Degussa P25) was used for comparison. Differences among the synthesized samples were observed not only in their quantitative phase composition, but also in their nanoparticles morphology (shape and size), specific surface area, pore size distribution and pHIEP (pH at isoelectric point), whereas the samples band-gap did not vary sizably. The samples showed different photocatalytic behavior in terms of N-phenylurea degradation, which are ascribed to their different physico-chemical properties and, especially, to their phase composition, stemming from the different synthesis conditions.

4.
Materials (Basel) ; 13(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012823

RESUMO

A simple, low cost, and "green" method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.

5.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901826

RESUMO

TiO2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol⁻gel method allowing the dispersion of Mo atoms in the TiO2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV⁻Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoOx species occurring only at a higher Mo content.

6.
J Vis Exp ; (117)2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911418

RESUMO

The goal of the protocol is to synthesize Fe-doped aluminosilicate nanotubes of the imogolite type with the formula (OH)3Al2-xFexO3SiOH. Doping with Fe aims at lowering the band gap of imogolite, an insulator with the chemical formula (OH)3Al2O3SiOH, and at modifying its adsorption properties towards azo-dyes, an important class of organic pollutants of both wastewater and groundwater. Fe-doped nanotubes are obtained in two ways: by direct synthesis, where FeCl3 is added to an aqueous mixture of the Si and Al precursors, and by post-synthesis loading, where preformed nanotubes are put in contact with a FeCl3•6H2O aqueous solution. In both synthesis methods, isomorphic substitution of Al3+ by Fe3+ occurs, preserving the nanotube structure. Isomorphic substitution is indeed limited to a mass fraction of ~1.0% Fe, since at a higher Fe content (i.e., a mass fraction of 1.4% Fe), Fe2O3 clusters form, especially when the loading procedure is adopted. The physicochemical properties of the materials are studied by means of X-ray powder diffraction (XRD), N2 sorption isotherms at -196 °C, high resolution transmission electron microscopy (HRTEM), diffuse reflectance (DR) UV-Vis spectroscopy, and ζ-potential measurements. The most relevant result is the possibility to replace Al3+ ions (located on the outer surface of the nanotubes) by post-synthesis loading on preformed imogolite without perturbing the delicate hydrolysis equilibria occurring during nanotube formation. During the loading procedure, an anionic exchange occurs, where Al3+ ions on the outer surface of the nanotubes are replaced by Fe3+ ions. In Fe-doped aluminosilicate nanotubes, isomorphic substitution of Al3+ by Fe3+ is found to affect the band gap of doped imogolite. Nonetheless, Fe3+ sites on the outer surface of nanotubes are able to coordinate organic moieties, like the azo-dye Acid Orange 7, through a ligand-displacement mechanism occurring in an aqueous solution.


Assuntos
Compostos Férricos , Nanotubos , Elétrons , Microscopia Eletrônica de Transmissão , Difração de Raios X
7.
ACS Appl Mater Interfaces ; 8(48): 32842-32852, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934173

RESUMO

A hybrid aerogel, composed of MoS2 sheets of 1T (distorted octahedral) and 2H (trigonal prismatic) phases, finely mixed with few layers of reduced graphene oxide (rGO) and obtained by means of a facile environment-friendly hydrothermal cosynthesis, is proposed as electrode material for supercapacitors. By electrochemical characterizations in three- and two-electrode configurations and symmetric planar devices, unique results have been obtained, with specific capacitance values up to 416 F g-1 and a highly stable capacitance behavior over 50000 charge-discharge cycles. The in-depth morphological and structural characterizations through field emission scanning electron microscopy, Raman, X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, and transmission electron microscopy analysis provides the proofs of the unique assembly of such 3D structured matrix. The unpacked MoS2 structure exhibits an excellent distribution of 1T and 2H phase sheets that are highly exposed to interaction with the electrolyte, and so available for surface/near-surface redox reactions, notwithstanding the quite low overall content of MoS2 embedded in the reduced graphene oxide (rGO) matrix. A comparison with other "more conventional" hybrid rGO-MoX2 electrochemically active materials, synthesized in the same conditions, is provided to support the outstanding behavior of the cosynthesized rGO-MoS2.

8.
Materials (Basel) ; 9(4)2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28773419

RESUMO

Manganese oxides (MnOx), being active, inexpensive and low-toxicity materials, are considered promising water oxidation catalysts (WOCs). This work reports the preparation and the physico-chemical and electrochemical characterization of spin-coated (SC) films of commercial Mn2O3, Mn3O4 and MnO2 powders. Spin coating consists of few preparation steps and employs green chemicals (i.e., ethanol, acetic acid, polyethylene oxide and water). To the best of our knowledge, this is the first time SC has been used for the preparation of stable powder-based WOCs electrodes. For comparison, MnOx films were also prepared by means of electrodeposition (ED) and tested under the same conditions, at neutral pH. Particular interest was given to α-Mn2O3-based films, since Mn (III) species play a crucial role in the electrocatalytic oxidation of water. To this end, MnO2-based SC and ED films were calcined at 500 °C, in order to obtain the desired α-Mn2O3 crystalline phase. Electrochemical impedance spectroscopy (EIS) measurements were performed to study both electrode charge transport properties and electrode-electrolyte charge transfer kinetics. Long-term stability tests and oxygen/hydrogen evolution measurements were also made on the highest-performing samples and their faradaic efficiencies were quantified, with results higher than 95% for the Mn2O3 SC film, finally showing that the SC technique proposed here is a simple and reliable method to study the electrocatalytic behavior of pre-synthesized WOCs powders.

9.
Phys Chem Chem Phys ; 17(16): 10774-80, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25811971

RESUMO

The hydrothermal synthesis of a nanosized cobalt doped aluminum phosphate CoAPO-5 (CoAPO-5-N) in a water-surfactant-organic solvent mixture (emulsion method) is reported, along with its physico-chemical characterization and comparison with a sample obtained by conventional synthesis (CoAPO-5-C). Both XRD (X-ray Diffraction) peak widths and FESEM (Field Emission Scanning Electron Microscopy) pictures of CoAPO-5-N are in agreement with a nanoscale structure, although the aggregation of nanoparticles occurred. EDX analysis shows a more homogeneous distribution of cobalt in CoAPO-5-N, not attainable by conventional synthesis. The specific surface area, as measured by nitrogen adsorption at 77 K, shows a limited increase in CoAPO-5-N (242 m(2) g(-1)) with respect to CoAPO-5-C (216 m(2) g(-1)), whereas the external surface area is almost tripled. Such a definite increase in the outer surface of CoAPO-5-N is also evidenced by the fourfold increase in the rate of a reaction only involving the exterior surface of particles, the light-driven oxidation of water by persulfate anions, as activated by the bulky Ru(bipy)3(2+) complex, unable to enter CoAPO-5 micropores. Two new features were also noted, adding to the knowledge of CoAPO-5 systems: (i) tetrahedral Co(3+) species may coordinate ammonia molecules, assuming an octahedral configuration, as determined by UV-vis spectroscopy; (ii) Co(2+) species in trigonal coordination occur, able to coordinate either CO molecules at a low temperature or ammonia (or water) at room temperature, as evidenced by IR and UV-vis spectroscopy, respectively.

10.
Phys Chem Chem Phys ; 16(15): 7074-82, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24615513

RESUMO

Samples of the activated microporous aluminophosphate Co-APO-5, featuring ca. 20% of Co(3+) cations, when immersed in water evolve molecular oxygen at room temperature in an endothermic process, without the need for either light or a sacrificial reactant. Successive drying of the sample at temperatures around 520 K releases molecular hydrogen, with recovery of the initial conditions. Several hydration-dehydration cycles may be performed without loss of activity, i.e. water is split in a thermal cycle under relatively mild conditions.


Assuntos
Compostos de Alumínio/química , Cobalto/química , Água/química , Óxido de Alumínio/química , Catálise , Fosfatos/química , Porosidade , Temperatura
11.
Phys Chem Chem Phys ; 15(32): 13381-90, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23788080

RESUMO

An IR spectroscopy study is reported on the nature and accessibility of external and internal surfaces of single-walled alumino-silicate nanotubes (NTs) of the imogolite type. NTs form bundles with hexagonal symmetry, in which three kinds of surfaces may be figured out: surface A is the inner surface of NTs; surface B is that between three aligned NTs in the hexagonal packing; and surface C arises from slit mesopores between bundles. Two materials were considered: proper imogolite (IMO, (OH)3Al2O3SiOH) and its methylated analogue, (Me-IMO, (OH)3Al2O3SiCH3). The chemical nature of the outer surface of NTs is the same in both materials, i.e. a curved gibbsite sheet with both Al-OH-Al and Al-O-Al groups and an amphoteric character. The inner surface is very hydrophilic in IMO NTs, lined by closely packed silanols, and hydrophobic in Me-IMO, all silanols being replaced by -SiCH3 groups. The change in chemical composition is accompanied by an increment in pore size, about 1.0 nm in IMO, and ca. 2.0 nm in Me-IMO, which implies a change in the accessibility of the B surface, not available to any molecule in IMO, and accessible in Me-IMO to small molecules like water, due to larger pores between NTs. Aluminol species at the B surface display an acidic nature, in contrast with that of the same species at surface C, because of a confinement effect.


Assuntos
Alumínio/química , Nanotubos/química , Silicatos/química , Propriedades de Superfície
12.
Chem Commun (Camb) ; 48(46): 5754-6, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22550633

RESUMO

We report the first use of cobalt aluminophosphate (CoAPO5) as a water oxidation catalyst. A decrease in the overvoltage by about 0.2 V with respect to catalyst free FTO has been observed. Additionally, we show that CoAPO5, deposited on ITO or Pt, can also act as a photo-electro-catalyst, as it generates enhanced oxidation currents in the presence of light starting from a bias of +0.8 V vs. Ag/AgCl.

13.
Phys Chem Chem Phys ; 13(2): 744-50, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21046043

RESUMO

Imogolite-like nanotubes have been synthesised in which SiCH(3) groups have been introduced in place of the SiOH groups that naturally occur at the inner surface of imogolite, an alumino-silicate with formula (OH)(3)Al(2)O(3)SiOH, forming nanotubes with inner and outer diameter of 1.0 and 2.0 nm, respectively. The new nanotubular material, composition (OH)(3)Al(2)O(3)SiCH(3), has both larger pores and higher specific surface area than unmodified imogolite: it forms as hollow cylinders 3.0 nm wide and several microns long, with a specific surface area of ca. 800 m(2) g(-1) and intriguing surface properties, due to hydrophobic groups inside the nanotubes and hydrophilic Al(OH)Al groups at their outer surface. Adsorption of methane at 30 °C has been studied in the pressure range between 5 and 35 bar on both the new material and unmodified imogolite: it resulted that the new material adsorption capacity is about 2.5 times larger than that of imogolite, in agreement with both its larger pore volume and the presence of a methylated surface. On account of these properties and of its novelty, the studied material has several potential technical applications, e.g. in the fields of gas chromatography and gas separation.

14.
Chemphyschem ; 11(15): 3255-61, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20839270

RESUMO

Interaction of gaseous ammonia with a NH(4)-ZSM-5 zeolite (Si/Al=11.5) was studied by means of infrared (IR) spectroscopy both at constant ambient temperature and in the temperature range 373-573 K. H-bonding of NH(3) molecules to the NH(4) (+) species takes place. The interaction is weak and reversible, resembling a solvation process. Spectral evidence shows that only one N--H moiety is actually available, indicating that ammonium ions are tricoordinated to the zeolite inner surface. H-bonded NH(3) has an absorption band at 1712 cm(-1), which grows with increasing pressure in two steps: a monosolvated ammonium species is initially formed, evolving to a disolvated species for pressures above 5 mbar. Coordination of the second NH(3) molecule takes place at the already coordinated NH(3) molecule and not at the ammonium cation. From the changes in intensity of the 1712 cm(-1) band with changing temperature under a moderate NH(3) equilibrium pressure, the calculated standard enthalpy and entropy of the monosolvation reaction were ΔH(0)=-34(±5) kJ mol(-1) and ΔS(0)=-88(±10) J mol(-1) K(-1), respectively. The enthalpy of the second solvation step was calculated from the corresponding equilibrium constant under the assumption of (nearly) the same entropy change for both solvation processes. In agreement with the overall picture, this enthalpy change is small (-15 kJ mol(-1) at the most). Since in a previous work (M. Armandi, B. Bonelli, I. Bottero, C. O. Areán, E. Garrone, J. Phys. Chem. C 2010, 114, 6658) the thermodynamic features of the reaction between bare Brønsted acid sites and NH(3) yielding NH(4) (+) species were determined, the data reported herein allow the study of the coexistence of different species in the NH(3)/H-ZSM-5 zeolite system: 1) unreacted acid Brønsted sites, 2) bare ammonium ions, and 3) variously solvated ammonium species. The relevant description is particularly simple when the overall average coverage is one molecule per site.

15.
Chemphyschem ; 10(18): 3316-9, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19882617

RESUMO

Adsorption of carbon dioxide on H-ZSM-5 zeolite (Si:Al=11.5:1) was studied by means of variable-temperature FT-IR spectroscopy, in the temperature range of 310-365 K. The adsorbed CO(2) molecules interact with the zeolite Brønsted-acid OH groups bringing about a characteristic red-shift of the O-H stretching band from 3610 cm(-1) to 3480 cm(-1). Simultaneously, the nu(3) mode of adsorbed CO(2) is observed at 2345 cm(-1). From the variation of integrated intensity of the IR absorption bands at both 3610 and 2345 cm(-1), upon changing temperature (and CO(2) equilibrium pressure), the standard adsorption enthalpy of CO(2) on H-ZSM-5 is DeltaH(0)=-31.2(+/-1) kJ mol(-1) and the corresponding entropy change is DeltaS(0)=-140(+/-10) J mol(-1) K(-1). These results are discussed in the context of available data for carbon dioxide adsorption on other protonic, and also alkali-metal exchanged, zeolites.

16.
Chemphyschem ; 9(12): 1747-51, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18618889

RESUMO

Variable temperature FT-IR spectroscopy (in the range of 298-380 K) is used to study the thermodynamics of formation of Ca(2+)...CO carbonyl species upon CO adsorption on the faujasite-type zeolite Ca-Y, and also the (temperature-dependent) isomerization equilibrium between carbonyl and isocarbonyl (Ca(2+)...OC) species. The standard enthalpy and entropy changes involved in formation of the monocarbonyl species resulted to be DeltaH(0)=-50.3 (+/-0.5) kJ mol(-1) and DeltaS(0)=-186 (+/-5) J mol(-1) K(-1), respectively. Isomerization of the (C-bonded) Ca(2+)...CO carbonyl to yield the (O-bonded) Ca(2+)...OC isocarbonyl involves an enthalpy change DeltaH(iso)(0)=+11.4 (+/-1.0) kJ mol(-1). These results are compared with previously reported data for the CO/Sr-Y system; and also, a brief analysis of enthalpy-entropy correlation for CO adsorption on zeolites and metal oxides is given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...