Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387507

RESUMO

As the genetic landscape of cardiomyopathies continues to expand, the identification of missense variants in disease-associated genes frequently leads to a classification of variant of uncertain significance (VUS). For the proper reclassification of such variants, functional characterization is an important contributor to the proper assessment of pathogenic potential. Several missense variants in the calcium transport regulatory protein phospholamban have been associated with dilated cardiomyopathy. However, >40 missense variants in this transmembrane peptide are currently known and most remain classified as VUS with little clinical information. Similarly, missense variants in cardiac myosin binding protein have been associated with hypertrophic cardiomyopathy. However, hundreds of variants are known and many have low penetrance and are often found in control populations. Herein, we focused on novel missense variants in phospholamban, an Ala15-Thr variant found in a 4-year-old female and a Pro21-Thr variant found in a 60-year-old female, both with a family history and clinical diagnosis of dilated cardiomyopathy. The patients also harbored a Val896-Met variant in cardiac myosin binding protein. The phospholamban variants caused defects in the function, phosphorylation, and dephosphorylation of this calcium transport regulatory peptide, and we classified these variants as potentially pathogenic. The variant in cardiac myosin binding protein alters the structure of the protein. While this variant has been classified as benign, it has the potential to be a low-risk susceptibility variant because of the structural change in cardiac myosin binding protein. Our studies provide new biochemical evidence for missense variants previously classified as benign or VUS.


Assuntos
Proteínas de Ligação ao Cálcio , Cardiomiopatia Dilatada , Pré-Escolar , Feminino , Humanos , Pessoa de Meia-Idade , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Peptídeos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
2.
Cardiovasc Res ; 116(5): 1021-1031, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373602

RESUMO

AIMS: Matrix metalloproteinase-2 (MMP-2) is a zinc-dependent protease which contributes to cardiac contractile dysfunction when activated during myocardial ischaemia-reperfusion (IR) injury. MMP-2 is localized to several subcellular sites inside cardiac myocytes; however, its role in the sarcoplasmic reticulum (SR) is unknown. The Ca2+ ATPase SERCA2a, which pumps cytosolic Ca2+ into the SR to facilitate muscle relaxation, is degraded in cardiac IR injury; however, the protease responsible for this is unclear. We hypothesized that MMP-2 contributes to cardiac contractile dysfunction by proteolyzing SERCA2a, thereby impairing its activity in IR injury. METHODS AND RESULTS: Isolated rat hearts were subjected to IR injury in the presence or absence of the selective MMP inhibitor ARP-100, or perfused aerobically as a control. Inhibition of MMP activity with ARP-100 significantly improved the recovery of cardiac mechanical function and prevented the increase of a 70 kDa SERCA2a degradation fragment following IR injury, although 110 kDa SERCA2a and phospholamban levels appeared unchanged. Electrophoresis of IR heart samples followed by LC-MS/MS confirmed the presence of a SERCA2a fragment of ∼70 kDa. MMP-2 activity co-purified with SR-enriched microsomes prepared from the isolated rat hearts. Endogenous SERCA2a in SR-enriched microsomes was proteolyzed to ∼70 kDa products when incubated in vitro with exogenous MMP-2. MMP-2 also cleaved purified porcine SERCA2a in vitro. SERCA activity in SR-enriched microsomes was decreased by IR injury; however, this was not prevented with ARP-100. CONCLUSION: This study shows that MMP-2 activity is found in SR-enriched microsomes from heart muscle and that SERCA2a is proteolyzed by MMP-2. The cardioprotective actions of MMP inhibition in myocardial IR injury may include the prevention of SERCA2a degradation.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/enzimologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Ácidos Hidroxâmicos/farmacologia , Preparação de Coração Isolado , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Proteólise , Ratos Sprague-Dawley , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/patologia , Sulfonas/farmacologia
3.
Subcell Biochem ; 87: 229-258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464562

RESUMO

The calcium pump (a.k.a. Ca2+-ATPase or SERCA) is a membrane transport protein ubiquitously found in the endoplasmic reticulum (ER) of all eukaryotic cells. As a calcium transporter, SERCA maintains the low cytosolic calcium level that enables a vast array of signaling pathways and physiological processes (e.g. synaptic transmission, muscle contraction, fertilization). In muscle cells, SERCA promotes relaxation by pumping calcium ions from the cytosol into the lumen of the sarcoplasmic reticulum (SR), the main storage compartment for intracellular calcium. X-ray crystallographic studies have provided an extensive understanding of the intermediate states that SERCA populates as it progresses through the calcium transport cycle. Historically, SERCA is also known to be regulated by small transmembrane peptides, phospholamban (PLN) and sarcolipin (SLN). PLN is expressed in cardiac muscle, whereas SLN predominates in skeletal and atrial muscle. These two regulatory subunits play critical roles in cardiac contractility. While our understanding of these regulatory mechanisms are still developing, SERCA and PLN are one of the best understood examples of peptide-transporter regulatory interactions. Nonetheless, SERCA appeared to have only two regulatory subunits, while the related sodium pump (a.k.a. Na+, K+-ATPase) has at least nine small transmembrane peptides that provide tissue specific regulation. The last few years have seen a renaissance in our understanding of SERCA regulatory subunits. First, structures of the SERCA-SLN and SERCA-PLN complexes revealed molecular details of their interactions. Second, an array of micropeptides concealed within long non-coding RNAs have been identified as new SERCA regulators. This chapter will describe our current understanding of SERCA structure, function, and regulation.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio , Retículo Endoplasmático , Células Musculares/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Cálcio/química , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteolipídeos/química , Proteolipídeos/genética , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
J Biol Chem ; 292(52): 21330-21339, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29081402

RESUMO

The sarcoplasmic reticulum Ca2+-ATPase SERCA promotes muscle relaxation by pumping calcium ions from the cytoplasm into the sarcoplasmic reticulum. SERCA activity is regulated by a variety of small transmembrane peptides, most notably by phospholamban in cardiac muscle and sarcolipin in skeletal muscle. However, how phospholamban and sarcolipin regulate SERCA is not fully understood. In the present study, we evaluated the effects of phospholamban and sarcolipin on calcium translocation and ATP hydrolysis by SERCA under conditions that mimic environments in sarcoplasmic reticulum membranes. For pre-steady-state current measurements, proteoliposomes containing SERCA and phospholamban or sarcolipin were adsorbed to a solid-supported membrane and activated by substrate concentration jumps. We observed that phospholamban altered ATP-dependent calcium translocation by SERCA within the first transport cycle, whereas sarcolipin did not. Using pre-steady-state charge (calcium) translocation and steady-state ATPase activity under substrate conditions (various calcium and/or ATP concentrations) promoting particular conformational states of SERCA, we found that the effect of phospholamban on SERCA depends on substrate preincubation conditions. Our results also indicated that phospholamban can establish an inhibitory interaction with multiple SERCA conformational states with distinct effects on SERCA's kinetic properties. Moreover, we noted multiple modes of interaction between SERCA and phospholamban and observed that once a particular mode of association is engaged it persists throughout the SERCA transport cycle and multiple turnover events. These observations are consistent with conformational memory in the interaction between SERCA and phospholamban, thus providing insights into the physiological role of phospholamban and its regulatory effect on SERCA transport activity.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Cristalografia por Raios X/métodos , Humanos , Hidrólise , Transporte de Íons , Proteínas de Membrana/metabolismo , Conformação Molecular , Proteínas Musculares/metabolismo , Relaxamento Muscular/fisiologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Conformação Proteica , Proteolipídeos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química
5.
J Biol Chem ; 289(37): 25855-66, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074938

RESUMO

To determine the structural and regulatory role of the C-terminal residues of phospholamban (PLB) in the membranes of living cells, we fused fluorescent protein tags to PLB and sarco/endoplasmic reticulum calcium ATPase (SERCA). Alanine substitution of PLB C-terminal residues significantly altered fluorescence resonance energy transfer (FRET) from PLB to PLB and SERCA to PLB, suggesting a change in quaternary conformation of PLB pentamer and SERCA-PLB regulatory complex. Val to Ala substitution at position 49 (V49A) had particularly large effects on PLB pentamer structure and PLB-SERCA regulatory complex conformation, increasing and decreasing probe separation distance, respectively. We also quantified a decrease in oligomerization affinity, an increase in binding affinity of V49A-PLB for SERCA, and a gain of inhibitory function as quantified by calcium-dependent ATPase activity. Notably, deletion of only a few C-terminal residues resulted in significant loss of PLB membrane anchoring and mislocalization to the cytoplasm and nucleus. C-terminal truncations also resulted in progressive loss of PLB-PLB FRET due to a decrease in the apparent affinity of PLB oligomerization. We quantified a similar decrease in the binding affinity of truncated PLB for SERCA and loss of inhibitory potency. However, despite decreased SERCA-PLB binding, intermolecular FRET for Val(49)-stop (V49X) truncation mutant was paradoxically increased as a result of an 11.3-Å decrease in the distance between donor and acceptor fluorophores. We conclude that PLB C-terminal residues are critical for localization, oligomerization, and regulatory function. In particular, the PLB C terminus is an important determinant of the quaternary structure of the SERCA regulatory complex.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Fenômenos Biofísicos , Cálcio/química , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/química , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Insuficiência Cardíaca/patologia , Humanos , Complexos Multiproteicos , Ligação Proteica , Estrutura Quaternária de Proteína/genética , Proteínas Recombinantes de Fusão/genética , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...