Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann ICRP ; 47(3-4): 327-341, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29745724

RESUMO

The ALLIANCE working group on effects of ionising radiation on wildlife brings together European researchers to work on the topics of radiosensitivity and transgenerational effects in non-human biota. Differences in radiation sensitivity across species and phyla are poorly understood, but have important implications for understanding the overall effects of radiation and for radiation protection; for example, sensitive species may require special attention in monitoring and radiation protection, and differences in sensitivity between species also lead to overall effects at higher levels (community, ecosystem), since interactions between species can be altered. Hence, understanding the mechanisms of interspecies radiation sensitivity differences may help to clarify mechanisms underpinning intraspecies variation. Differences in sensitivity may only be revealed when organisms are exposed to ionising radiation over several generations. This issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses of ionising radiation is a major concern. Animal and plant studies suggest that gamma irradiation can lead to observable effects in the F1 generation that are not attributable to inheritance of a rare stable DNA mutation. Several studies have provided evidence of an increase in genomic instability detected in germ or somatic cells of F1 organisms from exposed F0 organisms. This can lead to induced radiosensitivity, and can result in phenotypic effects or lead to reproductive effects and teratogenesis. In particular, studies have been conducted to understand the possible role of epigenetic modifications, such as DNA methylation, histone modifications, or expression of non-coding RNAs in radiosensitivity, as well as in adaptation effects. As such, research using biological models in which the relative contribution of genetic and epigenetic processes can be elucidated is highly valuable.


Assuntos
Epigênese Genética/efeitos da radiação , Plantas/efeitos da radiação , Proteção Radiológica/normas , Tolerância a Radiação , Radiação Ionizante , Animais , Epigênese Genética/genética , Europa (Continente) , Agências Internacionais , Plantas/genética
2.
Cell Death Dis ; 6: e1662, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719246

RESUMO

Since it was found that p53 is highly expressed in murine embryonic stem cells, it remained a mystery whether p53 is active in this cell type. We show that a significant part of p53 is localised in the nucleus of murine embryonic stem cells and that the majority of this nuclear p53 is bound to DNA. According to its nuclear localisation, we show that p53 alters the transcriptional program of stem cells. Nevertheless, the anti-proliferative activity of p53 is compromised in stem cells, and this control is due, at least in part, to the high amount of MdmX that is present in embryonic stem cells and bound to p53. Instead of the anti-proliferative activity that p53 has in differentiated cells, p53 controls transcription of pro-proliferative genes in embryonic stem cells including c-myc and c-jun. The impeded anti-proliferative activity of p53 and the induction of certain proto-oncogenes by p53 in murine embryonic stem cells can explain why stem cells proliferate efficiently despite having high levels of p53.


Assuntos
Núcleo Celular/metabolismo , Células-Tronco Embrionárias/metabolismo , Transcriptoma/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Camundongos , Mutação , Proteína Supressora de Tumor p53/genética
3.
Cell Death Differ ; 14(10): 1802-12, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17599098

RESUMO

Sprouty (Spry) proteins are ligand-inducible inhibitors of receptor tyrosine kinases-dependent signaling pathways, which control various biological processes, including proliferation, differentiation and survival. Here, we investigated the regulation and the role of Spry2 in cells of the central nervous system (CNS). In primary cultures of immature neurons, the neurotrophic factor BDNF (brain-derived neurotrophic factor) regulates spry2 expression. We identified the transcription factors CREB and SP1 as important regulators of the BDNF activation of the spry2 promoter. In immature neurons, we show that overexpression of wild-type Spry2 blocks neurite formation and neurofilament light chain expression, whereas inhibition of Spry2 by a dominant-negative mutant or small interfering RNA favors sprouting of multiple neurites. In mature neurons that exhibit an extensive neurite network, spry2 expression is sustained by BDNF and is downregulated during neuronal apoptosis. Interestingly, in these differentiated neurons, overexpression of Spry2 induces neuronal cell death, whereas its inhibition favors neuronal survival. Together, our results imply that Spry2 is involved in the development of the CNS by inhibiting both neuronal differentiation and survival through a negative-feedback loop that downregulates neurotrophic factors-driven signaling pathways.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Membrana/metabolismo , Neurônios/citologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Camundongos , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...