Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 8(10): 4371-4379, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854053

RESUMO

Metal halide perovskites (MHPs) are disruptive materials for a vast class of optoelectronic devices. The presence of electronic trap states has been a tough challenge in terms of characterization and thus mitigation. Many attempts based on electronic spectroscopies have been tested, but due to the mixed electronic-ionic nature of MHP conductivity, many experimental results retain a large ambiguity in resolving electronic and ionic charge contributions. Here we adapt a method, previously used in highly resistive inorganic semiconductors, called photoinduced current transient spectroscopy (PICTS) on lead bromide 2D-like ((PEA)2PbBr4) and standard "3D" (MAPbBr3) MHP single crystals. We present two conceptually different outcomes of the PICTS measurements, distinguishing the different electronic and ionic contributions to the photocurrents based on the different ion drift of the two materials. Our experiments unveil deep level trap states on the 2D, "ion-frozen" (PEA)2PbBr4 and set new boundaries for the applicability of PICTS on 3D MHPs.

2.
ACS Appl Mater Interfaces ; 13(49): 58301-58308, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851625

RESUMO

Methylammonium lead tribromide (MAPbBr3) perovskite single crystals demonstrate to be excellent direct X-ray and gamma-ray detectors with outstanding sensitivity and low limit of detection. Despite this, thorough studies on the photophysical effects of exposure to high doses of ionizing radiation on this material are still lacking. In this work, we present our findings regarding the effects of controlled X-ray irradiation on the optoelectronic properties of MAPbBr3 single crystals. Irradiation is carried out in air with an imaging X-ray tube, simulating real-life application in a medical facility. By means of surface photovoltage spectroscopy, we find that X-ray exposure quenches free excitons in the material and introduces new bound excitonic species. Despite this drastic effect, the crystals recover after 1 week of storage in dark and low humidity conditions. By means of X-ray photoelectron spectroscopy, we find that the origin of the new bound excitonic species is the formation of bromine vacancies, leading to local changes in the dielectric response of the material. The recovery effect is attributed to vacancy filling by atmospheric oxygen and water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...