Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 7(2): 303-12, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18096446

RESUMO

Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair.


Assuntos
Morte Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Dímeros de Pirimidina/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Raios Ultravioleta , Adenoviridae , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Immunoblotting , Receptores X do Fígado , Receptores Nucleares Órfãos , Dímeros de Pirimidina/genética , Receptores Citoplasmáticos e Nucleares/genética , Transdução Genética
2.
DNA Repair (Amst) ; 5(8): 925-34, 2006 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-16798111

RESUMO

Xeroderma pigmentosum (XP) is an autosomal recessive photosensitive disorder with an extremely high incidence of skin cancers. Seven complementation groups, corresponding to seven proteins involved in nucleotide excision repair (NER), are associated with this syndrome. However, in XP variant patients, the disorder is caused by defects in DNA polymerase eta; this error prone polymerase, encoded by POLH, is involved in translesion DNA synthesis (TLS) on DNA templates damaged by ultraviolet light (UV). We constructed a recombinant adenovirus carrying the human POLH cDNA linked to the EGFP reporter gene (AdXPV-EGFP) and infected skin fibroblasts from both XPV and XPA patients. Twenty-four hours after infection, the DNA polymerase eta-EGFP fusion protein was detected by Western blot analysis, demonstrating successful transduction by the adenoviral vector. Protein expression was accompanied by reduction in the high sensitivity of XPV cells to UV, as determined by cell survival and apoptosis-induction assays. Moreover, the pronounced UV-induced inhibition of DNA synthesis in XPV cells and their arrest in S phase were attenuated in AdXPV-EGFP infected cells, confirming that the transduced polymerase was functional. However, over-expression of polymerase eta mediated by AdXPV-EGFP infection did not result in enhancement of cell survival, prevention of apoptosis, or higher rate of nascent DNA strand growth in irradiated XPA cells. These results suggest that TLS by DNA polymerase eta is not a limiting factor for recovery from cellular responses induced by UV in excision-repair deficient fibroblasts.


Assuntos
Adenoviridae/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Vetores Genéticos/genética , Transdução Genética/métodos , Xeroderma Pigmentoso/genética , Western Blotting , Células Cultivadas , Replicação do DNA/efeitos da radiação , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Raios Ultravioleta
3.
Cancer Gene Ther ; 12(4): 389-96, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15650764

RESUMO

The nucleotide excision repair (NER) is one of the major human DNA repair pathways. Defects in one of the proteins that act in this system result in three distinct autosomal recessive syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). TFIIH is a nine-protein complex essential for NER activity, initiation of RNA polymerase II transcription and with a possible role in cell cycle regulation. XPD is part of the TFIIH complex and has a helicase function, unwinding the DNA in the 5' --> 3' direction. Mutations in the XPD gene are found in XP, TTD and XP/CS patients, the latter exhibiting both XP and CS symptoms. Correction of DNA repair defects of these cells by transducing the complementing wild-type gene is one potential strategy for helping these patients. Over the last years, adenovirus vectors have been largely used in gene delivering because of their efficient transduction, high titer, and stability. In this work, we present the construction of a recombinant adenovirus carrying the XPD gene, which is coexpressed with the EGFP reporter gene by an IRES sequence, making it easier to follow cell infection. Infection by this recombinant adenovirus grants full correction of SV40-transformed and primary skin fibroblasts obtained from XP-D, TTD and XP/CS patients.


Assuntos
Adenoviridae/genética , DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Recombinação Genética , Fatores de Transcrição/genética , Western Blotting , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular , Células Cultivadas , Síndrome de Cockayne/genética , Síndrome de Cockayne/terapia , DNA/metabolismo , Relação Dose-Resposta à Radiação , Displasia Ectodérmica/genética , Displasia Ectodérmica/terapia , Fibroblastos/metabolismo , Citometria de Fluxo , Teste de Complementação Genética , Humanos , Cinética , Masculino , Microscopia de Fluorescência , Modelos Genéticos , Mutação , Fenótipo , RNA Polimerase II/metabolismo , Sensibilidade e Especificidade , Pele/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/genética , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/terapia , Proteína Grupo D do Xeroderma Pigmentoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...