Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723884

RESUMO

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Etanol , Camundongos Transgênicos , Núcleo Accumbens , Receptores de Glicina , Recompensa , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Receptores de Glicina/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Camundongos , Masculino , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/metabolismo
2.
Life Sci ; 348: 122673, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679193

RESUMO

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Assuntos
Etanol , Técnicas de Introdução de Genes , Receptores de Glicina , Animais , Etanol/farmacologia , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Camundongos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Transgênicos , Receptores de GABA-A
3.
Alcohol ; 107: 73-90, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36087859

RESUMO

Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.


Assuntos
Alcoolismo , Núcleo Accumbens , Humanos , Ratos , Animais , Camundongos , Idoso , Lactente , Etanol/farmacologia , Encéfalo , Envelhecimento , Consumo de Bebidas Alcoólicas
4.
Front Cell Dev Biol ; 10: 999265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568973

RESUMO

The parapineal organ is a midline-derived epithalamic structure that in zebrafish adopts a left-sided position at embryonic stages to promote the development of left-right asymmetries in the habenular nuclei. Despite extensive knowledge about its embryonic and larval development, it is still unknown whether the parapineal organ and its profuse larval connectivity with the left habenula are present in the adult brain or whether, as assumed from historical conceptions, this organ degenerates during ontogeny. This paper addresses this question by performing an ontogenetic analysis using an integrative morphological, ultrastructural and neurochemical approach. We find that the parapineal organ is lost as a morphological entity during ontogeny, while parapineal cells are incorporated into the posterior wall of the adult left dorsal habenular nucleus as small clusters or as single cells. Despite this integration, parapineal cells retain their structural, neurochemical and connective features, establishing a reciprocal synaptic connection with the more dorsal habenular neuropil. Furthermore, we describe the ultrastructure of parapineal cells using transmission electron microscopy and report immunoreactivity in parapineal cells with antibodies against substance P, tachykinin, serotonin and the photoreceptor markers arrestin3a and rod opsin. Our findings suggest that parapineal cells form an integral part of a neural circuit associated with the left habenula, possibly acting as local modulators of the circuit. We argue that the incorporation of parapineal cells into the habenula may be part of an evolutionarily relevant developmental mechanism underlying the presence/absence of the parapineal organ in teleosts, and perhaps in a broader sense in vertebrates.

5.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948050

RESUMO

α-Synuclein (αSyn) species can be detected in synaptic boutons, where they play a crucial role in the pathogenesis of Parkinson's Disease (PD). However, the effects of intracellular αSyn species on synaptic transmission have not been thoroughly studied. Here, using patch-clamp recordings in hippocampal neurons, we report that αSyn oligomers (αSynO), intracellularly delivered through the patch electrode, produced a fast and potent effect on synaptic transmission, causing a substantial increase in the frequency, amplitude and transferred charge of spontaneous synaptic currents. We also found an increase in the frequency of miniature synaptic currents, suggesting an effect located at the presynaptic site of the synapsis. Furthermore, our in silico approximation using docking analysis and molecular dynamics simulations showed an interaction between a previously described small anti-amyloid beta (Aß) molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), with a central hydrophobic region of αSyn. In line with this finding, our empirical data aimed to obtain oligomerization states with thioflavin T (ThT) and Western blot (WB) indicated that M30 interfered with αSyn aggregation and decreased the formation of higher-molecular-weight species. Furthermore, the effect of αSynO on synaptic physiology was also antagonized by M30, resulting in a decrease in the frequency, amplitude, and charge transferred of synaptic currents. Overall, the present results show an excitatory effect of intracellular αSyn low molecular-weight species, not previously described, that are able to affect synaptic transmission, and the potential of a small neuroactive molecule to interfere with the aggregation process and the synaptic effect of αSyn, suggesting that M30 could be a potential therapeutic strategy for synucleinopathies.


Assuntos
Isoquinolinas/farmacologia , Neurônios/citologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Benzotiazóis/farmacologia , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Ratos , Transmissão Sináptica
6.
Front Mol Neurosci ; 14: 756607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744627

RESUMO

The glycine receptor (GlyR), a ligand-gated ion channel, is critical for inhibitory neurotransmission in brainstem, spinal cord, and in supraspinal regions. Recent data from several laboratories have shown that GlyRs are expressed in the brain reward circuitry and that α1 and α2 are the principal subunits expressed in the nucleus accumbens (nAc). In the present study, we studied the sensitivity to ethanol of homomeric and heteromeric α3 GlyR subunits in HEK293 cells and dissociated neurons from the nAc. Finally, we explored ethanol-related behaviors in a Glra3 knockout mouse (Glra3 -/-). Studies in HEK293 cells showed that while homomeric α3 GlyR subunits were insensitive to ethanol, heteromeric α3ß GlyR subunits showed higher sensitivity to ethanol. Additionally, using electrophysiological recordings in dissociated accumbal neurons, we found that the glycine current density increased in Glra3 -/- mice and the GlyRs were less affected by ethanol and picrotoxin. We also examined the effect of ethanol on sedation and drinking behavior in Glra3 -/- mice and found that the duration in the loss of righting reflex (LORR) was unchanged compared to wild-type (WT) mice. On the other hand, using the drinking in the dark (DID) paradigm, we found that Glra3 -/- mice have a larger ethanol consumption compared to WT mice, and that this was already high during the first days of exposure to ethanol. Our results support the conclusion that heteromeric α3ß, but not homomeric α3, GlyRs are potentiated by ethanol. Also, the increase in GlyR and GABA A R mediated current densities in accumbal neurons in the KO mice support the presence of compensatory changes to α3 knock out. The increase in ethanol drinking in the Glra3 -/- mice might be associated to the reduction in ß and compensatory changes in other subunits in the receptor arrangement.

7.
Elife ; 82019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789589

RESUMO

Neurotrophins are growth factors that have a multitude of roles in the nervous system. We report that neurotrophins induce the fission of mitochondria along embryonic chick sensory axons driven by combined PI3K and Mek-Erk signaling. Following an initial burst of fission, a new steady state of neurotrophin-dependent mitochondria length is established. Mek-Erk controls the activity of the fission mediator Drp1 GTPase, while PI3K may contribute to the actin-dependent aspect of fission. Drp1-mediated fission is required for nerve growth factor (NGF)-induced collateral branching in vitro and expression of dominant negative Drp1 impairs the branching of axons in the developing spinal cord in vivo. Fission is also required for NGF-induced mitochondria-dependent intra-axonal translation of the actin regulatory protein cortactin, a previously determined component of NGF-induced branching. Collectively, these observations unveil a novel biological function of neurotrophins; the regulation of mitochondrial fission and steady state mitochondrial length and density in axons.

8.
Dev Neurobiol ; 77(12): 1351-1370, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28901718

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351-1370, 2017.


Assuntos
Axônios/ultraestrutura , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Acetilcarnitina/farmacologia , Actinas/metabolismo , Amidas/farmacologia , Animais , Células Cultivadas , Embrião de Galinha , Complexo Dinactina/metabolismo , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/ultraestrutura , Peptídeos/farmacologia , Piridinas/farmacologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Complexo Vitamínico B/farmacologia
9.
Mol Cell Neurosci ; 84: 36-47, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28359843

RESUMO

The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.


Assuntos
Axônios/metabolismo , Citoesqueleto/metabolismo , Cones de Crescimento/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Humanos , Neurogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...