Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035776

RESUMO

Sepsis is a dysregulated systemic immune response to infection that is responsible for ∼35% of in-hospital deaths at a significant fiscal health care cost. Our laboratory, among others, has demonstrated the efficacy of targeting negative checkpoint regulators (NCRs) to improve survival in a murine model of sepsis, cecal ligation and puncture (CLP). B7-CD28 superfamily member, V-domain Immunoglobulin Suppressor of T cell Activation (VISTA), is an ideal candidate for strategic targeting in sepsis. VISTA is a 35-45 kDa type 1 transmembrane protein with unique biology that sets it apart from all other NCRs. We recently reported that VISTA-/- mice had a significant survival deficit post CLP which was rescued upon adoptive transfer of a VISTA-expressing pMSCV-mouse Foxp3-EF1α-GFP-T2A-puro stable Jurkat cell line (Jurkatfoxp3 T cells). Based on our prior study, we investigated the effector cell target of Jurkatfoxp3 T cells in VISTA-/- mice. γδ T cells are a powerful lymphoid subpopulation that require regulatory fine-tuning by Tregs to prevent overt inflammation/pathology. In this study, we hypothesized that Jurkatfoxp3 T cells non-redundantly modulate the γδ T cell population post CLP. We found that VISTA-/- mice have an increased accumulation of intestinal CD69low γδ T cells which are not protective in murine sepsis. Adoptive transfer of Jurkatfoxp3 T cells, decreased the intestinal γδ T cell population, suppressed proliferation, skewed remaining γδ T cells toward a CD69high phenotype, and increased sCD40L in VISTA-/- mice post CLP. These results support a potential regulatory mechanism by which VISTA skews intestinal γδ T cell lineage representation in murine sepsis.

2.
Front Med (Lausanne) ; 10: 1176602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305124

RESUMO

Introduction: The co-regulatory molecule, HVEM, can stimulate or inhibit immune function, but when co-expressed with BTLA, forms an inert complex preventing signaling. Altered HVEM or BTLA expression, separately have been associated with increased nosocomial infections in critical illness. Given that severe injury induces immunosuppression, we hypothesized that varying severity of shock and sepsis in murine models and critically ill patients would induce variable increases in HVEM/BTLA leukocyte co-expression. Methods: In this study, varying severities of murine models of critical illness were utilized to explore HVEM+BTLA+ co-expression in the thymic and splenic immune compartments, while circulating blood lymphocytes from critically ill patients were also assessed for HVEM+BTLA+ co-expression. Results: Higher severity murine models resulted in minimal change in HVEM+BTLA+ co-expression, while the lower severity model demonstrated increased HVEM+BTLA+ co-expression on thymic and splenic CD4+ lymphocytes and splenic B220+ lymphocytes at the 48-hour time point. Patients demonstrated increased co-expression of HVEM+BTLA+ on CD3+ lymphocytes compared to controls, as well as CD3+Ki67- lymphocytes. Both L-CLP 48hr mice and critically ill patients demonstrated significant increases in TNF-α. Discussion: While HVEM increased on leukocytes after critical illness in mice and patients, changes in co-expression did not relate to degree of injury severity of murine model. Rather, co-expression increases were seen at later time points in lower severity models, suggesting this mechanism evolves temporally. Increased co-expression on CD3+ lymphocytes in patients on non-proliferating cells, and associated TNF-α level increases, suggest post-critical illness co-expression does associate with developing immune suppression.

3.
Front Med (Lausanne) ; 10: 1003121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113606

RESUMO

Introduction: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a commonly occurring sequelae of traumatic injury resulting from indirect insults like hypovolemic shock and/or extrapulmonary sepsis. The high lethality rate associated with these pathologies outlines the importance of clarifying the "priming" effects seen in the post-shock lung microenvironment, which are understood to bring about a dysregulated or overt immune response when triggered by a secondary systemic infectious/septic challenge culminating in ALI. In this pilot project, we test the hypothesis that application of a single cell multiomics approach can elucidate novel phenotype specific pathways potentially contributing to shock-induced ALI/ARDS. Methods: Hypovolemic shock was induced in C57BL/6 (wild-type), PD-1, PD-L1, or VISTA gene deficient male mice, 8-12 weeks old. Wild-type sham surgeries function as negative controls. A total of 24-h post-shock rodents were sacrificed, their lungs harvested and sectioned, with pools prepared from 2 mice per background, and flash frozen on liquid nitrogen. N = 2 biological replicates (representing 4 mice total) were achieved for all treatment groups across genetic backgrounds. Samples were received by the Boas Center for Genomics and Human Genetics, where single cell multiomics libraries were prepared for RNA/ATAC sequencing. The analysis pipeline Cell Ranger ARC was implemented to attain feature linkage assessments across genes of interest. Results: Sham (pre-shock) results suggest high chromatin accessibility around calcitonin receptor like receptor (CALCRL) across cellular phenotypes with 17 and 18 feature links, exhibiting positive correlation with gene expression between biological replicates. Similarity between both sample chromatin profiles/linkage arcs is evident. Post-shock wild-type accessibility is starkly reduced across replicates where the number of feature links drops to 1 and 3, again presenting similar replicate profiles. Samples from shocked gene deficient backgrounds displayed high accessibility and similar profiles to the pre-shock lung microenvironment. Conclusion: High pre-shock availability of DNA segments and their positive correlation with CALCRL gene expression suggests an apparent regulatory capacity on transcription. Post-shock gene deficient chromatin profiles presented similar results to that of pre-shock wild-type samples, suggesting an influence on CALCRL accessibility. Key changes illustrated in the pre-ALI context of shock may allow for additional resolution of "priming" and "cellular pre-activation/pre-disposition" processes within the lung microenvironment.

4.
J Extracell Biol ; 1(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36688929

RESUMO

JC polyomavirus (JCPyV) is a small, non-enveloped virus that persists in the kidney in about half the adult population. In severely immune-compromised individuals JCPyV causes the neurodegenerative disease progressive multifocal leukoencephalopathy (PML) in the brain. JCPyV has been shown to infect cells by both direct and indirect mechanisms, the latter involving extracellular vesicle (EV) mediated infection. While direct mechanisms of infection are well studied indirect EV mediated mechanisms are poorly understood. Using a combination of chemical and genetic approaches we show that several overlapping intracellular pathways are responsible for the biogenesis of virus containing EV. Here we show that targeting neutral sphingomyelinase 2 (nSMase2) with the drug cambinol decreased the spread of JCPyV over several viral life cycles. Genetic depletion of nSMase2 by either shRNA or CRISPR/Cas9 reduced EV-mediated infection. Individual knockdown of seven ESCRT-related proteins including HGS, ALIX, TSG101, VPS25, VPS20, CHMP4A, and VPS4A did not significantly reduce JCPyV associated EV (JCPyV(+) EV) infectivity, whereas knockdown of the tetraspanins CD9 and CD81 or trafficking and/or secretory autophagy-related proteins RAB8A, RAB27A, and GRASP65 all significantly reduced the spread of JCPyV and decreased EV-mediated infection. These findings point to a role for exosomes and secretory autophagosomes in the biogenesis of JCPyV associated EVs with specific roles for nSMase2, CD9, CD81, RAB8A, RAB27A, and GRASP65 proteins.

5.
Expert Opin Ther Targets ; 25(3): 175-189, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641552

RESUMO

Introduction: Sepsis is characterized by a dysregulated host response to infection. Sepsis-associated morbidity/mortality demands concerted research efforts toward therapeutic interventions which are reliable, broadly effective, and etiologically based. More intensive and extensive investigations on alterations in cellular signaling pathways, gene targeting as a means of modifying the characteristic hyper and/or hypo-immune responses, prevention through optimization of the microbiome, and the molecular pathways underlying the septic immune response could improve outcomes.] Areas covered: The authors discuss key experimental mammalian models and clinical trials. They provide an evaluation of evolving therapeutics in sepsis and how they have built upon past and current treatments. Relevant literature was derived from a PubMed search spanning 1987-2020.Expert opinion: Given the complex nature of sepsis and the elicited immune response, it is not surprising that a single cure-all therapeutic intervention, which is capable of effectively and reliably improving patient outcomes has failed to emerge. Innovative approaches seek to address not only the disease process but modify underlying patient factors. A true improvement in sepsis-associated morbidity/mortality will require a combination of unique therapeutic modalities.


Assuntos
Terapia de Alvo Molecular , Sepse/terapia , Animais , Modelos Animais de Doenças , Humanos , Sepse/imunologia , Sepse/fisiopatologia , Transdução de Sinais/fisiologia , Resultado do Tratamento
6.
Arthritis Rheumatol ; 67(11): 2866-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246128

RESUMO

OBJECTIVE: B lymphoid kinase (BLK) is associated with rheumatoid arthritis (RA) and several other B cell-associated autoimmune disorders. BLK risk variants are consistently associated with reduced BLK expression, but the mechanisms by which reduced expression alters human B cell function to confer autoimmune disease susceptibility are unknown. This study was undertaken to characterize the BLK risk haplotype and to determine associated B cell functional phenotypes involved in autoimmunity. METHODS: The BLK risk haplotype association with RA (determined using whole-genome sequencing data) was confirmed in 2,526 RA cases and 2,134 controls. Peripheral blood mononuclear cells (PBMCs) from RA patients, healthy adults, and umbilical cord blood were used to study B cell functional phenotypes associated with the BLK risk genotype. Association of the BLK haplotype with B cell phenotypes was analyzed using cell culture and flow cytometry. RESULTS: Two insertion/deletions were found on the RA risk haplotype in BLK, and the reduction in BLK expression associated with the risk haplotype was confirmed in primary B lymphocytes. Carriers of the RA-associated haplotype had evidence of lower basal B cell receptor (BCR) signaling activity, yet their B cells were hyperactivatable, with enhanced up-regulation of CD86 after BCR crosslinking and greater T cell stimulatory capacity. The number of isotype-switched memory B cells was also significantly increased in subjects carrying the risk haplotype. CONCLUSION: A major mechanism underlying the BLK association with autoimmune disease involves lowered thresholds for BCR signaling, enhanced B cell-T cell interactions, and altered patterns of isotype switching.


Assuntos
Doenças Autoimunes/genética , Linfócitos B/imunologia , Predisposição Genética para Doença , Haplótipos , Ativação Linfocitária/genética , Quinases da Família src/genética , Alelos , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Genótipo , Humanos , Isotipos de Imunoglobulinas , Ativação Linfocitária/imunologia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...