Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Curr Protoc ; 3(12): e940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38050642

RESUMO

In a living cell, proteins interact to assemble both transient and constant molecular complexes, which transfer signals/information around internal pathways. Modern proteomic techniques can identify the constituent components of these complexes, but more detailed analysis demands a network approach linking the molecules together and analyzing the emergent architectural properties. The Bioconductor package BioNAR combines a selection of existing R protocols for network analysis with newly designed original methodological features to support step-by-step analysis of biological/biomedical . Critically, BioNAR supports a pipeline approach whereby many networks and iterative analyses can be performed. Here we present a network analysis pipeline that starts from initiating a network model from a list of components/proteins and their interactions through to identifying its functional components based solely on network topology. We demonstrate that BioNAR can help users achieve a number of network analysis goals that are difficult to achieve anywhere else. This includes how users can choose the optimal clustering algorithm from a range of options based on independent annotation enrichment, and predict a protein's influence within and across multiple subcomplexes in the network and estimate the co-occurrence or linkage between metadata at the network level (e.g., diseases and functions across the network, identifying the clusters whose components are likely to share common function and mechanisms). The package is freely available in Bioconductor release 3.17: https://bioconductor.org/packages/3.17/bioc/html/BioNAR.html. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating and annotating the network Support Protocol 1: Installing BioNAR from RStudio Support Protocol 2: Building the sample network from synaptome.db Basic Protocol 2: Network properties and centrality Basic Protocol 3: Network communities Basic protocol 4: Choosing the optimal clustering algorithm based on the enrichment with annotation terms Basic Protocol 5: Influencing network components and bridgeness Basic Protocol 6: Co-occurrence of the annotations.


Assuntos
Proteômica , Software , Algoritmos , Proteínas
2.
PLoS One ; 18(12): e0295848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38109382

RESUMO

Hikers and hillwalkers typically use the gradient in the direction of travel (walking slope) as the main variable in established methods for predicting walking time (via the walking speed) along a route. Research into fell-running has suggested further variables which may improve speed algorithms in this context; the gradient of the terrain (hill slope) and the level of terrain obstruction. Recent improvements in data availability, as well as widespread use of GPS tracking now make it possible to explore these variables in a walking speed model at a sufficient scale to test statistical significance. We tested various established models used to predict walking speed against public GPS data from almost 88,000 km of UK walking / hiking tracks. Tracks were filtered to remove breaks and non-walking sections. A new generalised linear model (GLM) was then used to predict walking speeds. Key differences between the GLM and established rules were that the GLM considered the gradient of the terrain (hill slope) irrespective of walking slope, as well as the terrain type and level of terrain obstruction in off-road travel. All of these factors were shown to be highly significant, and this is supported by a lower root-mean-square-error compared to existing functions. We also observed an increase in RMSE between the GLM and established methods as hill slope increases, further supporting the importance of this variable.


Assuntos
Corrida , Caminhada , Velocidade de Caminhada , Modelos Lineares , Algoritmos , Fenômenos Biomecânicos
3.
Front Behav Neurosci ; 17: 1148172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035623

RESUMO

Monitoring the activity of mice within their home cage is proving to be a powerful tool for revealing subtle and early-onset phenotypes in mouse models. Video-tracking, in particular, lends itself to automated machine-learning technologies that have the potential to improve the manual annotations carried out by humans. This type of recording and analysis is particularly powerful in objective phenotyping, monitoring behaviors with no experimenter intervention. Automated home-cage testing allows the recording of non-evoked voluntary behaviors, which do not require any contact with the animal or exposure to specialist equipment. By avoiding stress deriving from handling, this approach, on the one hand, increases the welfare of experimental animals and, on the other hand, increases the reliability of results excluding confounding effects of stress on behavior. In this study, we show that the monitoring of climbing on the wire cage lid of a standard individually ventilated cage (IVC) yields reproducible data reflecting complex phenotypes of individual mouse inbred strains and of a widely used model of neurodegeneration, the N171-82Q mouse model of Huntington's disease (HD). Measurements in the home-cage environment allowed for the collection of comprehensive motor activity data, which revealed sexual dimorphism, daily biphasic changes, and aging-related decrease in healthy C57BL/6J mice. Furthermore, home-cage recording of climbing allowed early detection of motor impairment in the N171-82Q HD mouse model. Integrating cage-floor activity with cage-lid activity (climbing) has the potential to greatly enhance the characterization of mouse strains, detecting early and subtle signs of disease and increasing reproducibility in preclinical studies.

4.
Nat Commun ; 14(1): 1602, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959177

RESUMO

Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Actinas/genética , Actinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Núcleo Celular/metabolismo , Expressão Gênica , Integrinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Neoplasias Cutâneas/metabolismo
5.
Front Physiol ; 14: 1076533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776967

RESUMO

As a model organism, Drosophila is uniquely placed to contribute to our understanding of how brains control complex behavior. Not only does it have complex adaptive behaviors, but also a uniquely powerful genetic toolkit, increasingly complete dense connectomic maps of the central nervous system and a rapidly growing set of transcriptomic profiles of cell types. But this also poses a challenge: Given the massive amounts of available data, how are researchers to Find, Access, Integrate and Reuse (FAIR) relevant data in order to develop an integrated anatomical and molecular picture of circuits, inform hypothesis generation, and find reagents for experiments to test these hypotheses? The Virtual Fly Brain (virtualflybrain.org) web application & API provide a solution to this problem, using FAIR principles to integrate 3D images of neurons and brain regions, connectomics, transcriptomics and reagent expression data covering the whole CNS in both larva and adult. Users can search for neurons, neuroanatomy and reagents by name, location, or connectivity, via text search, clicking on 3D images, search-by-image, and queries by type (e.g., dopaminergic neuron) or properties (e.g., synaptic input in the antennal lobe). Returned results include cross-registered 3D images that can be explored in linked 2D and 3D browsers or downloaded under open licenses, and extensive descriptions of cell types and regions curated from the literature. These solutions are potentially extensible to cover similar atlasing and data integration challenges in vertebrates.

6.
Bioinform Adv ; 2(1): vbac086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699346

RESUMO

Summary: The neuronal synapse is underpinned by a large and diverse proteome but the molecular evidence is spread across many primary datasets. These data were recently curated into a single dataset describing a landscape of ∼8000 proteins found in studies of mammalian synapses. Here, we describe programmatic access to the dataset via the R/Bioconductor package Synaptome.db, which enables convenient and in-depth data analysis from within the Bioconductor environment. Synaptome.db allows users to obtain the respective gene information, e.g. subcellular localization, brain region, gene ontology, disease association and construct custom protein-protein interaction network models for gene sets and entire subcellular compartments. Availability and implementation: The package Synaptome.db is part of Bioconductor since release 3.14, https://bioconductor.org/packages/release/data/annotation/html/synaptome.db.html, it is open source and available under the Artistic license 2.0. The development version is maintained on GitHub (https://github.com/lptolik/synaptome.db). Full documentation including examples is provided in the form of vignettes on the package webpage. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

7.
Pain ; 162(9): 2349-2365, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448751

RESUMO

ABSTRACT: Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.


Assuntos
Cistite Intersticial , Endometriose , Cistite Intersticial/terapia , Feminino , Humanos , Dor Pélvica/terapia , Reprodutibilidade dos Testes , Pesquisa Translacional Biomédica
9.
Sci Rep ; 11(1): 9967, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976238

RESUMO

Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein-protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.


Assuntos
Sinapses/genética , Sinapses/metabolismo , Sinapses/fisiologia , Bases de Dados Genéticas , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Proteômica
10.
Neuron ; 107(6): 1071-1079.e2, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32931755

RESUMO

Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC.


Assuntos
Drosophila melanogaster/citologia , Gânglios dos Invertebrados/citologia , Rede Nervosa/citologia , Neurônios/classificação , Terminologia como Assunto , Animais , Linhagem da Célula , Drosophila melanogaster/fisiologia , Gânglios dos Invertebrados/fisiologia , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia
11.
J Psychopharmacol ; 34(7): 709-715, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32438848

RESUMO

BACKGROUND: Rodent behavioural assays are widely used to delineate the mechanisms of psychiatric disorders and predict the efficacy of drug candidates. Conventional behavioural paradigms are restricted to short time windows and involve transferring animals from the homecage to unfamiliar apparatus which induces stress. Additionally, factors including environmental perturbations, handling and the presence of an experimenter can impact behaviour and confound data interpretation. To improve welfare and reproducibility these issues must be resolved. Automated homecage monitoring offers a more ethologically relevant approach with reduced experimenter bias. AIM: To evaluate the effectiveness of an automated homecage system at detecting locomotor and social alterations induced by phencyclidine (PCP) in group-housed rats. PCP is an N-methyl-D-aspartate (NMDA) receptor antagonist commonly utilised to model aspects of schizophrenia. METHODS: Rats housed in groups of three were implanted with radio frequency identification (RFID) tags. Each homecage was placed over a RFID reader baseplate for the automated monitoring of the social and locomotor activity of each individual rat. For all rats, we acquired homecage data for 24 h following administration of both saline and PCP (2.5 mg/kg). RESULTS: PCP resulted in significantly increased distance travelled from 15 to 60 min post injection. Furthermore, PCP significantly enhanced time spent isolated from cage mates and this asociality occured from 60 to 105 min post treatment. CONCLUSIONS: Unlike conventional assays, in-cage monitoring captures the temporal duration of drug effects on multiple behaviours in the same group of animals. This approach could benefit psychiatric preclinical drug discovery through improved welfare and increased between-laboratory replicability.


Assuntos
Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Fenciclidina/farmacologia , Animais , Transtornos Dissociativos/psicologia , Masculino , Dispositivo de Identificação por Radiofrequência , Ratos , Reprodutibilidade dos Testes , Comportamento Social , Fatores de Tempo
12.
Cell ; 180(6): 1178-1197.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200800

RESUMO

Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Masculino , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Comportamento Social , Transmissão Sináptica , Ácido gama-Aminobutírico/genética
13.
Front Cell Dev Biol ; 7: 222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681758

RESUMO

The p140Cap adaptor protein is a scaffold molecule physiologically expressed in few epithelial tissues, such as the mammary gland, and in differentiated neurons. While the role of p140Cap in mammary gland epithelia is not still understood, we already know that a significant subset of breast cancers express p140Cap. In the subgroup of ERBB2-amplified breast cancers, a high p140Cap status predicts a significantly lower probability of developing a distant event and a clear difference in survival. p140Cap is causal in dampening ERBB2-positive tumor cell progression, impairing tumor onset and growth, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. Since only a few p140Cap interacting proteins have been identified in breast cancer and the molecular complexes and pathways underlying the cancer function of p140Cap are largely unknown, we generated a p140Cap interactome from ERBB2-positive breast cancer cells, identifying cancer specific components and those shared with the synaptic interactome. We identified 373 interacting proteins in cancer cells, including those with functions relevant to cell adhesion, protein homeostasis, regulation of cell cycle and apoptosis, which are frequently deregulated in cancer. Within the interactome, we identified 15 communities (clusters) with topology-functional relationships. In neurons, where p140Cap is key in regulating synaptogenesis, synaptic transmission and synaptic plasticity, it establishes an extensive interactome with proteins that cluster to sub complexes located in the postsynaptic density. p140Cap interactors converge on key synaptic processes, including synaptic transmission, actin cytoskeleton remodeling and cell-cell junction organization. Comparing the breast cancer to the synaptic interactome, we found 39 overlapping proteins, a relatively small overlap. However, cell adhesion and remodeling of actin cytoskeleton clearly emerge as common terms in the shared subset. Thus, the functional signature of the two interactomes is primarily determined by organ/tissue and functional specificity, while the overlap provides a list of shared functional terms, which might be linked to both cancer and neurological functions.

14.
J Neurosci Methods ; 321: 49-63, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30991030

RESUMO

BACKGROUND: Neurotrauma patients face major neurological sequelae. The failure in the preclinical-to-clinical translation of candidate therapies could be due to poor evaluation of rodent behaviours after neurotrauma. NEW METHOD: A home cage automated system was used to study the long term behaviour of individual rats with traumatic brain injury (TBI), spinal cord injury (SCI) and non-CNS injured controls, whilst group-housed in their home cages. Naïve rats were used as baseline controls. Automated locomotor activity and body temperature recordings were carried out 24 h /day for 3 days/week during 12 weeks post-injury. Behavioural patterns, including aggression, rearing, grooming, feeding and drinking were analysed from automated video recordings during week 1, 6 and 12. RESULTS: SCI animals showed a lower locomotor activity compared to TBI or control animals during light and dark phases. TBI animals showed a higher aggression during the dark phase in the first week post-injury compared to SCI or control animals. Individual grooming and rearing were reduced in SCI animals compared to TBI and control animals in the first week post-injury during the dark phase. No differences in drinking or feeding were detected between groups. Locomotor activity did not differ between naïve male and female rats, but body temperature differ between light and dark phases for both. STANDARD METHODS: Injury severity was compared to standard SCI and TBI behaviour scores (BBB and mNSS, respectively) and histological analysis. CONCLUSIONS: This study demonstrates the practical benefits of using a non-intrusive automated home cage recording system to observe long term individual behaviour of group-housed SCI and TBI rats.


Assuntos
Comportamento Animal , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/psicologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/psicologia , Gravação em Vídeo/métodos , Animais , Temperatura Corporal , Modelos Animais de Doenças , Feminino , Asseio Animal , Locomoção , Masculino , Reconhecimento Automatizado de Padrão , Ratos Sprague-Dawley
15.
J Neurosci ; 39(24): 4694-4713, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30948475

RESUMO

Adult zebrafish, in contrast to mammals, regenerate neurons in their brain, but the extent and variability of this capacity is unclear. Here we ask whether the loss of various dopaminergic neuron populations is sufficient to trigger their functional regeneration. Both sexes of zebrafish were analyzed. Genetic lineage tracing shows that specific diencephalic ependymo-radial glial (ERG) progenitor cells give rise to new dopaminergic [tyrosine hydroxylase-positive (TH+)] neurons. Ablation elicits an immune response, increased proliferation of ERG progenitor cells, and increased addition of new TH+ neurons in populations that constitutively add new neurons (e.g., diencephalic population 5/6). Inhibiting the immune response attenuates neurogenesis to control levels. Boosting the immune response enhances ERG proliferation, but not addition of TH+ neurons. In contrast, in populations in which constitutive neurogenesis is undetectable (e.g., the posterior tuberculum and locus ceruleus), cell replacement and tissue integration are incomplete and transient. This is associated with a loss of spinal TH+ axons, as well as permanent deficits in shoaling and reproductive behavior. Hence, dopaminergic neuron populations in the adult zebrafish brain show vast differences in regenerative capacity that correlate with constitutive addition of neurons and depend on immune system activation.SIGNIFICANCE STATEMENT Despite the fact that zebrafish show a high propensity to regenerate neurons in the brain, this study reveals that not all types of dopaminergic neurons are functionally regenerated after specific ablation. Hence, in the same adult vertebrate brain, mechanisms of successful and incomplete regeneration can be studied. We identify progenitor cells for dopaminergic neurons and show that activating the immune system promotes the proliferation of these cells. However, in some areas of the brain this only leads to insufficient replacement of functionally important dopaminergic neurons that later disappear. Understanding the mechanisms of regeneration in zebrafish may inform interventions targeting the regeneration of functionally important neurons, such as dopaminergic neurons, from endogenous progenitor cells in nonregenerating mammals.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Fenômenos do Sistema Imunitário/fisiologia , Regeneração Nervosa/fisiologia , Peixe-Zebra/fisiologia , Envelhecimento , Animais , Axônios/fisiologia , Linhagem da Célula/genética , Proliferação de Células , Diencéfalo/citologia , Diencéfalo/fisiologia , Feminino , Masculino , Microglia/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Comportamento Sexual Animal/fisiologia
16.
Proteomes ; 6(3)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071621

RESUMO

The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.

17.
Sci Rep ; 8(1): 9246, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915372

RESUMO

We present a bioluminescence method, based on the calcium-reporter Aequorin (AEQ), that exploits targeted transgenic expression patterns to identify activity of specific neural groups in the larval Drosophila nervous system. We first refine, for intact but constrained larva, the choice of Aequorin transgene and method of delivery of the co-factor coelenterazine and assay the luminescence signal produced for different neural expression patterns and concentrations of co-factor, using standard photo-counting techniques. We then develop an apparatus that allows simultaneous measurement of this neural signal while video recording the crawling path of an unconstrained animal. The setup also enables delivery and measurement of an olfactory cue (CO2) and we demonstrate the ability to record synchronized changes in Kenyon cell activity and crawling speed caused by the stimulus. Our approach is thus shown to be an effective and affordable method for studying the neural basis of behavior in Drosophila larvae.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiologia , Drosophila/metabolismo , Drosophila/fisiologia , Larva/metabolismo , Larva/fisiologia , Equorina/metabolismo , Equorina/fisiologia , Animais , Animais Geneticamente Modificados/metabolismo , Animais Geneticamente Modificados/fisiologia , Cálcio/metabolismo , Imidazóis/metabolismo , Luminescência , Fenômenos Fisiológicos do Sistema Nervoso , Pirazinas/metabolismo
18.
Sci Rep ; 8(1): 5658, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618727

RESUMO

Polymerisation of clathrin is a key process that underlies clathrin-mediated endocytosis. Clathrin-coated vesicles are responsible for cell internalization of external substances required for normal homeostasis and life -sustaining activity. There are several hypotheses describing formation of closed clathrin structures. According to one of the proposed mechanisms cage formation may start from a flat lattice buildup on the cellular membrane, which is later transformed into a curved structure. Creation of the curved surface requires rearrangement of the lattice, induced by additional molecular mechanisms. Different potential mechanisms require a modeling framework that can be easily modified to compare between them. We created an extendable rule-based model that describes polymerisation of clathrin molecules and various scenarios of cage formation. Using Global Sensitivity Analysis (GSA) we obtained parameter sets describing clathrin pentagon closure and the emergence/production and closure of large-size clathrin cages/vesicles. We were able to demonstrate that the model can reproduce budding of the clathrin cage from an initial flat array.


Assuntos
Membrana Celular/química , Clatrina/química , Invaginações Revestidas da Membrana Celular/química , Modelos Teóricos , Polimerização , Conformação Proteica , Humanos , Termodinâmica
19.
J Pharmacol Toxicol Methods ; 94(Pt 1): 1-13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614333

RESUMO

BACKGROUND: The ActualHCA™ system continuously monitors the activity, temperature and behavior of group-housed rats without invasive surgery. The system was validated to detect the contrasting effects of sedative and stimulant test agents (chlorpromazine, clonidine and amphetamine), and compared with the modified Irwin test (mIT) with rectal temperature measurements. METHODS: Six male Han Wistar rats per group were used to assess each test agent and vehicle controls in separate ActualHCA™ recordings and mIT. The mIT was undertaken at 15, 30 mins, 1, 2, 4 and 24 h post-dose. ActualHCA™ recorded continuously for 24 h post-dose under 3 experimental conditions: dosed during light phase, dark phase, and light phase with a scheduled cage change at the time of peak effects determined by mIT. RESULTS: ActualHCA™ detected an increase stimulated activity from the cage change at 1-2 h post-dose which was obliterated by chlorpromazine and clonidine. Amphetamine increased activity up to 4 h post-dose in all conditions. Temperature from ActualHCA™ was affected by all test agents in all conditions. The mIT showed effects on all 3 test agents up to 4 h post-dose, with maximal effects at 1-2 h post-dose. The maximal effects on temperature from ActualHCA™ differed from mIT. Delayed effects on activity were detected by ActualHCA™, but not on mIT. CONCLUSIONS: Continuous monitoring has the advantage of capturing effects over time that may be missed with manual tests using pre-determined time points. This automated behavioural system does not replace the need for conventional methods but could be implemented simultaneously to improve our understanding of behavioural pharmacology.


Assuntos
Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Masculino , Ratos , Ratos Wistar
20.
Nat Neurosci ; 21(1): 130-138, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203896

RESUMO

The postsynaptic proteome of excitatory synapses comprises ~1,000 highly conserved proteins that control the behavioral repertoire, and mutations disrupting their function cause >130 brain diseases. Here, we document the composition of postsynaptic proteomes in human neocortical regions and integrate it with genetic, functional and structural magnetic resonance imaging, positron emission tomography imaging, and behavioral data. Neocortical regions show signatures of expression of individual proteins, protein complexes, biochemical and metabolic pathways. We characterized the compositional signatures in brain regions involved with language, emotion and memory functions. Integrating large-scale GWAS with regional proteome data identifies the same cortical region for smoking behavior as found with fMRI data. The neocortical postsynaptic proteome data resource can be used to link genetics to brain imaging and behavior, and to study the role of postsynaptic proteins in localization of brain functions.


Assuntos
Neocórtex/patologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Biologia Computacional , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Potenciais da Membrana/genética , Microinjeções , Neocórtex/diagnóstico por imagem , Proteínas do Tecido Nervoso/genética , Oócitos , Oxigênio/sangue , Técnicas de Patch-Clamp , Tomografia por Emissão de Pósitrons , Proteômica , Acidente Vascular Cerebral/patologia , Sinapses/ultraestrutura , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...