Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 124(2): 336-350, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31541203

RESUMO

Species' geographical ranges are often restricted due to niche limitation resulting in geographical isolation and reduced population size at range margins. Under the "abundant center" paradigm, static marginal populations are thus expected to show higher genetic differentiation and lower genetic diversity than core populations. Low mate availability may also drive shifts toward higher propensity for selfing in geographically marginal populations. However, these predictions remain to be validated for contemporary range shifts occurring under current environmental change. This study is devoted to bridging this gap and assesses the spatial patterns of genetic structure and mating system across the geographical range of two coastal plant species characterized by contrasting contemporary range dynamics: the receding myrmecochorous Dune pansy (Viola tricolor subsp. curtisii) and the widespread expanding hydrochorous Rock samphire (Crithmum maritimum). Both species exhibited high propensity for selfing, with indications of inbreeding depression acting at early life stages. In Dune pansy, a biogeographical break was observed between core and marginal populations, with trailing-edge populations showing higher levels of genetic differentiation, reduced genetic diversity, and higher levels of selfing estimated through progeny arrays. In contrast, genetic structuring was weak in Rock samphire and no clear spatial trends were observed in genetic diversity nor in mating system, likely the result of efficient long-distance seed dispersal by sea-surface currents. Our study highlights that key species differences in life-history traits related to dispersal and/or mate limitation modify the expectations of genetic diversity loss and mating system shift in contemporary range-expanding populations, as compared with historical core populations.


Assuntos
Apiaceae/genética , Variação Genética , Genética Populacional , Viola/genética , Ecossistema , Europa (Continente) , Geografia , Depressão por Endogamia , Repetições de Microssatélites , Filogeografia , Densidade Demográfica , Reprodução
2.
Mol Biol Rep ; 45(3): 203-209, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29404829

RESUMO

Identifying spatial patterns of genetic differentiation across a species range is critical to set up conservation and restoration decision-making. This is especially timely, since global change triggers shifts in species' geographic distribution and in the geographical variation of mating system and patterns of genetic differentiation, with varying consequences at the trailing and leading edges of a species' distribution. Using 454 pyrosequencing, we developed nuclear microsatellite loci for two plant species showing a strictly coastal geographical distribution and contrasting range dynamics: the expanding rock samphire (Crithmum maritimum, 21 loci) and the highly endangered and receding dune pansy (Viola tricolor subsp. curtisii, 12 loci). Population genetic structure was then assessed by genotyping more than 100 individuals from four populations of each of the two target species. Rock samphire displayed high levels of genetic differentiation (FST = 0.38), and a genetic structure typical of a mostly selfing species (FIS ranging from 0.16 to 0.58). Populations of dune pansy showed a less pronounced level of population structuring (FST = 0.25) and a genotypic structure more suggestive of a mixed-mating system when excluding two loci with heterozygote excess. These results demonstrate that the genetic markers developed here are useful to assess the mating system of populations of these two species. They will be tools of choice to investigate phylogeographical patterns and variation in mating system over the geographical distribution ranges for two coastal plant species that are subject to dynamic evolution due to rapid contemporary global change.


Assuntos
Apiaceae/genética , Viola/genética , Fluxo Gênico/genética , Marcadores Genéticos/genética , Variação Genética , Genética Populacional/métodos , Genótipo , Geografia/métodos , Heterozigoto , Repetições de Microssatélites , Polimorfismo Genético
3.
Mol Ecol ; 26(17): 4434-4451, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28667796

RESUMO

Human activities affect microevolutionary dynamics by inducing environmental changes. In particular, land cover conversion and loss of native habitats decrease genetic diversity and jeopardize the adaptive ability of populations. Nonetheless, new anthropogenic habitats can also promote the successful establishment of emblematic pioneer species. We investigated this issue by examining the population genetic features and evolutionary history of the natterjack toad (Bufo [Epidalea] calamita) in northern France, where populations can be found in native coastal habitats and coalfield habitats shaped by European industrial history, along with an additional set of European populations located outside this focal area. We predicted contrasting patterns of genetic structure, with newly settled coalfield populations departing from migration-drift equilibrium. As expected, coalfield populations showed a mosaic of genetically divergent populations with short-range patterns of gene flow, and native coastal populations indicated an equilibrium state with an isolation-by-distance pattern suggestive of postglacial range expansion. However, coalfield populations exhibited (i) high levels of genetic diversity, (ii) no evidence of local inbreeding or reduced effective population size and (iii) multiple maternal mitochondrial lineages, a genetic footprint depicting independent colonization events. Furthermore, approximate Bayesian computations suggested several evolutionary trajectories from ancient isolation in glacial refugia during the Pleistocene, with biogeographical signatures of recent expansion probably confounded by human-mediated mixing of different lineages. From an evolutionary and conservation perspective, this study highlights the ecological value of industrial areas, provided that ongoing regional gene flow is ensured within the existing lineage boundaries.


Assuntos
Bufonidae/classificação , Ecossistema , Fluxo Gênico , Genética Populacional , Animais , Teorema de Bayes , Carvão Mineral , DNA Mitocondrial/genética , França , Variação Genética , Mineração , Filogenia
4.
J Hered ; 107(7): 660-665, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27634537

RESUMO

Amphibians are undergoing a major decline worldwide and the steady increase in the number of threatened species in this particular taxa highlights the need for conservation genetics studies using high-quality molecular markers. The natterjack toad, Bufo (Epidalea) calamita, is a vulnerable pioneering species confined to specialized habitats in Western Europe. To provide efficient and cost-effective genetic resources for conservation biologists, we developed and characterized 22 new nuclear microsatellite markers using next-generation sequencing. We also used sequence data acquired from Sanger sequencing to develop the first mitochondrial markers for KASPar assay genotyping. Genetic polymorphism was then analyzed for 95 toads sampled from 5 populations in France. For polymorphic microsatellite loci, number of alleles and expected heterozygosity ranged from 2 to 14 and from 0.035 to 0.720, respectively. No significant departures from panmixia were observed (mean multilocus F IS = -0.015) and population differentiation was substantial (mean multilocus F ST = 0.222, P < 0.001). From a set of 18 mitochondrial SNPs located in the 16S and D-loop region, we further developed a fast and cost-effective SNP genotyping method based on competitive allele-specific PCR amplification (KASPar). The combination of allelic states for these mitochondrial DNA SNP markers yielded 10 different haplotypes, ranging from 2 to 5 within populations. Populations were highly differentiated (G ST = 0.407, P < 0.001). These new genetic resources will facilitate future parentage, population genetics and phylogeographical studies and will be useful for both evolutionary and conservation concerns, especially for the set-up of management strategies and the definition of distinct evolutionary significant units.


Assuntos
Bufonidae/classificação , Bufonidae/genética , DNA Mitocondrial , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Variação Genética , Genética Populacional , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase
5.
Evol Appl ; 9(8): 1005-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27606008

RESUMO

Studying wild pathogen populations in natural ecosystems offers the opportunity to better understand the evolutionary dynamics of biotic diseases in crops and to enhance pest control strategies. We used simulations and genetic markers to investigate the spatial and temporal population genetic structure of wild populations of the beet cyst nematode Heterodera schachtii on a wild host plant species, the sea beet (Beta vulgaris spp. maritima), the wild ancestor of cultivated beets. Our analysis of the variation of eight microsatellite loci across four study sites showed that (i) wild H. schachtii populations displayed fine-scaled genetic structure with no evidence of substantial levels of gene flow beyond the scale of the host plant, and comparisons with simulations indicated that (ii) genetic drift substantially affected the residual signals of isolation-by-distance processes, leading to departures from migration-drift equilibrium. In contrast to what can be suspected for (crop) field populations, this showed that wild cyst nematodes have very low dispersal capabilities and are strongly disconnected from each other. Our results provide some key elements for designing pest control strategies, such as decreasing passive dispersal events to limit the spread of virulence among field nematode populations.

6.
Evol Appl ; 9(3): 489-501, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26989440

RESUMO

The sustainability of modern agriculture relies on strategies that can control the ability of pathogens to overcome chemicals or genetic resistances through natural selection. This evolutionary potential, which depends partly on effective population size (N e ), is greatly influenced by human activities. In this context, wild pathogen populations can provide valuable information for assessing the long-term risk associated with crop pests. In this study, we estimated the effective population size of the beet cyst nematode, Heterodera schachtii, by sampling 34 populations infecting the sea beet Beta vulgaris spp. maritima twice within a one-year period. Only 20 populations produced enough generations to analyze the variation in allele frequencies, with the remaining populations showing a high mortality rate of the host plant after only 1 year. The 20 analyzed populations showed surprisingly low effective population sizes, with most having N e close to 85 individuals. We attribute these low values to the variation in population size through time, systematic inbreeding, and unbalanced sex-ratios. Our results suggest that H. schachtii has low evolutionary potential in natural environments. Pest control strategies in which populations on crops mimic wild populations may help prevent parasite adaptation to host resistance.

7.
Ecol Evol ; 4(10): 1828-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24963380

RESUMO

Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco - the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity.

8.
Mol Ecol ; 19(8): 1540-58, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20345690

RESUMO

Plant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp. maritima), three sexual types co-occur: females carrying a cytoplasmic male sterility (CMS) gene, hermaphrodites carrying a non-CMS cytoplasm and restored hermaphrodites that carry CMS genes and nuclear restorer alleles. This study investigated the effects of fine-scale genetic structure on male reproductive success of the two hermaphroditic forms. Our study population was strongly structured and characterized by contrasting local sex-ratios. Pollen flow was constrained over short distances and depended on local plant density. Interestingly, restored hermaphrodites sired significantly more seedlings than non-CMS hermaphrodites, despite the previous observation that the former produce pollen of lower quality than the latter. This result was explained by the higher frequency of females in the local vicinity of restored (CMS) hermaphrodites as compared to non-CMS hermaphrodites. Population structure thus strongly influences individual fitness and may locally counteract the expected effects of selection, suggesting that understanding fine scale population processes is central to predicting the evolution of gender polymorphism in angiosperms.


Assuntos
Beta vulgaris/genética , Genética Populacional , Infertilidade das Plantas/genética , Pólen/genética , Teorema de Bayes , Núcleo Celular/genética , Citoplasma/genética , DNA de Plantas/genética , Evolução Molecular , Aptidão Genética , Variação Genética , Fenótipo , Reprodução/genética
9.
Evol Appl ; 3(3): 305-18, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-25567926

RESUMO

Reproductive traits are key parameters for the evolution of invasiveness in weedy crop-wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop-wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop-wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management.

10.
Mol Ecol ; 18(15): 3201-15, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19627487

RESUMO

Introgression arising from crop-to-wild gene flow provides novel sources of genetic variation in plant species complexes. Hybridization within the Beta vulgaris species complex is of immediate concern; crop lineages (B. vulgaris ssp. vulgaris) hybridize easily with their wild relatives (B. vulgaris ssp. maritima) thereby threatening wild beet gene diversity with genetic swamping. Hybridization 'hotspots' occur in European seed production areas because inland ruderal wild beets occur and reproduce in sympatry with cultivated beets. We studied gene flow occurring between seed-producing cultivars and ruderal wild B. vulgaris in southwestern France to determine whether feral beets, arising from unharvested cultivated seed, represent an opportunity for crop-to-wild gene flow. We surveyed 42 inland ruderal beet populations located near seed production fields for nucleo-cytoplasmic variation and used a cytoplasmic marker diagnostic of cultivated lines. Occurrence of cultivated-type cytoplasm within ruderal populations clearly reflected events of crop seed escape. However, we found no genetic signatures of nuclear cultivated gene introgression, which suggests past introgression of cultivated cytoplasm into a wild nuclear background through seed escape rather than recent direct pollen flow. Overall, patterns of genetic structure suggested that inland ruderal wild beet populations act as a metapopulation, with founding events involving a few sib groups, followed by low rates of seed or pollen gene flow after populations are established. Altogether, our results indicate that a long-lived seed bank plays a key role in maintaining cultivated-type cytoplasm in the wild and highlight the need for careful management of seed production areas where wild and cultivated relatives co-occur.


Assuntos
Beta vulgaris/genética , Fluxo Gênico , Variação Genética , Genética Populacional , Produtos Agrícolas/genética , Citoplasma/genética , DNA de Plantas/genética , França , Marcadores Genéticos , Genoma de Planta , Geografia , Hibridização Genética , Desequilíbrio de Ligação , Análise de Sequência de DNA
11.
Evolution ; 63(6): 1483-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19222569

RESUMO

This study is devoted to assess sex ratio variation among 33 populations of the gynodioecious Beta vulgaris ssp. maritima in Brittany (France) and to explore the causes of this variation. We showed that three different CMS (cytoplasmic male sterility) cytotypes occurred in populations, but strongly differed for their frequencies and the frequency of their associated nuclear restorer alleles (which counteract the effect of CMS and restore male fertility). No correlation was found between CMS and restorer frequencies within populations, which has been previously interpreted as a result of stochasticity. However, neutral genetic variation did not indicate recent population bottlenecks in studied populations. Moreover, no significant correlation was found between female frequency or variance and current population size. Consequently, stochastic processes could not be the major cause of sex ratio variation. Alternatively, empirical estimations of the variation of females, CMS genes and nuclear restorer allele's frequencies were compared to theoretical predictions based on a frequency-dependent selection model of gynodioecy. In particular, we showed that an absence of correlation between CMS and restorer frequencies could also occur without stochasticity. The large variation of sex ratio in Beta vulgaris could thus be explained by frequency-dependent selection acting on CMS genes and restorer alleles.


Assuntos
Beta vulgaris/genética , Variação Genética , Genética Populacional , Seleção Genética , Razão de Masculinidade , Alelos , Fertilidade/genética , Frequência do Gene , Modelos Genéticos , Polimorfismo Genético
12.
Theor Appl Genet ; 116(8): 1063-77, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18335202

RESUMO

Hybridization between cultivated species and their wild relatives is now widely considered to be common. In the Beta vulgaris complex, the sugar beet seed multiplication areas have been the scene of inadvertent pollination of sugar beet seed bearers by wild ruderal pollen donors, generating a weedy form of beet which infests sugar beet fields in European countries. Up to now, investigations of evolutionary dynamics of genetic diversity within the B. vulgaris complex were addressed using few genetical markers and few accessions. In this study, we tackled this issue using a panel of complementary markers: five nuclear microsatellite loci, four mitochondrial minisatellite loci and one chloroplastic PCR-RFLP marker. We sampled 1,640 individuals that illustrate the actual distribution of inland ruderal beets of South Western France, weed beets and wild sea beets of northern France as well as the diversity of 35 contemporary European diploid cultivars. Nuclear genetic diversity in weed beets appeared to be as high as those of ruderal beets and sea beets, whereas the narrowness of cultivar accessions was confirmed. This genetic bottleneck in cultivars is even more important in the cytoplasmic genome as only one haplotype was found among all sugar beet cultivars. The large majority of weed beet populations also presented this unique cytoplasmic haplotype, as expected owing to their maternal cultivated origin. Nonetheless, various cytoplasmic haplotypes were found within three populations of weed beets, implying wild-to-weed seed flows. Finally, our findings gave new insights into the genetical relationships between the components of the B. vulgaris complex: (1) we found a very strong genetic divergence between wild sea beet and other relatives, which was unexpected given the recent evolutionary history and the full cross-compatibility of all taxa and (2) we definitely confirmed that the classification into cultivated, wild, ruderal and weed forms according to their geographical location, phenotype or their domesticated status is clearly in accordance with genetic clustering despite the very recent domestication process of sugar beet.


Assuntos
Beta vulgaris/classificação , Beta vulgaris/genética , Núcleo Celular/genética , Citoplasma/genética , Variação Genética , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , DNA de Plantas/genética , Fluxo Gênico , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
13.
Mol Ecol ; 16(18): 3801-13, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17850547

RESUMO

Gene flow is a crucial parameter that can affect the organization of genetic diversity in plant species. It has important implications in terms of conservation of genetic resources and of gene exchanges between crop to wild relatives and within crop species complex. In the Beta vulgaris complex, hybridization between crop and wild beets in seed production areas is well documented and the role of the ensuing hybrids, weed beets, as bridges towards wild forms in sugar beet production areas have been shown. Indeed, in contrast to cultivated beets that are bi-annual, weed beets can bolt, flower and reproduce in the same crop season. Nonetheless, the extent of pollen gene dispersal through weedy lineages remains unknown. In this study, the focus is directed towards weed-to-weed gene flow, and we report the results of a pollen-dispersal analysis within an agricultural landscape composed of five sugar beet fields with different levels of infestation by weed beets. Our results, based on paternity analysis of 3240 progenies from 135 maternal plants using 10 microsatellite loci, clearly demonstrate that even if weedy plants are mostly pollinated by individuals from the same field, some mating events occur between weed beets situated several kilometres apart (up to 9.6 km), with rates of interfield-detected paternities ranging from 11.3% to 17.5%. Moreover, we show that pollen flow appears to be more restricted when individuals are aggregated as most mating events occurred only for short-distance classes. The best-fit dispersal curves were fat-tailed geometric functions for populations exhibiting low densities of weed beets and thin-tailed Weibull function for fields with weed beet high densities. Thus, weed beet populations characterized by low density with geographically isolated individuals may be difficult to detect but are likely to act as pollen traps for pollen emitted by close and remote fields. Hence, it appears evident that interfield pollen-mediated gene flow between weed beets is almost unavoidable and could contribute to the diffusion of (trans)genes in the agricultural landscape.


Assuntos
Beta vulgaris/genética , Fluxo Gênico , Pólen/genética , Beta vulgaris/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Hibridização Genética , Funções Verossimilhança , Modelos Genéticos , Dinâmica não Linear
14.
Mol Ecol ; 16(9): 1847-64, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17444897

RESUMO

Patterns of seed dispersal in the wild sea beet (Beta vulgaris ssp. maritima) are predicted to be influenced by marine currents because populations are widely distributed along the European Atlantic coast. We investigated the potential influence of marine currents on the pattern of spatial genetic structuring in natural populations of sea beet. Populations were located along the French coasts of the Anglo-Norman gulf that features peculiar marine currents in the Channel. Thirty-three populations were sampled, among which 23 were continental and 10 were insular populations located in Jersey, Guernsey and Chausey, for a total of 1224 plants genotyped. To validate the coastal topography influence and the possibility of marine current orientated gene flow on the genetic features of sea beet populations, we assessed patterns of genetic structuring of cytoplasmic and nuclear diversity by: (i) searching for an isolation-by-distance (IBD) pattern using spatial autocorrelation tools; (ii) using the Monmonier algorithm to identify genetic boundaries in the area studied; and (iii) performing assignment tests that are based on multilocus genotype information to ascertain population membership of individuals. Our results showed a highly contrasted cytoplasmic and nuclear genetic differentiation and highlighted the peculiar situation of island populations. Beyond a classical isolation-by-distance due to short-range dispersal, genetic barriers fitting the orientation of marine currents were clearly identified. This suggests the occurrence of long-distance seed dispersal events and an asymmetrical gene flow separating the eastern and western part of the Anglo-Norman gulf.


Assuntos
Beta vulgaris/genética , DNA/genética , Demografia , Variação Genética , Genética Populacional , Movimentos da Água , Ilhas Anglo-Normandas , Análise por Conglomerados , França , Fluxo Gênico/genética , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Repetições Minissatélites/genética
15.
Proc Biol Sci ; 273(1592): 1391-8, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16777728

RESUMO

Gynodioecy is a breeding system where both hermaphroditic and female individuals coexist within plant populations. This dimorphism is the result of a genomic interaction between maternally inherited cytoplasmic male sterility (CMS) genes and bi-parentally inherited nuclear male fertility restorers. As opposed to other gynodioecious species, where every cytoplasm seems to be associated with male sterility, wild beet Beta vulgaris ssp. maritima exhibits a minority of sterilizing cytoplasms among numerous non-sterilizing ones. Many studies on population genetics have explored the molecular diversity of different CMS cytoplasms, but questions remain concerning their evolutionary dynamics. In this paper we report one of the first investigations on phylogenetic relationships between CMS and non-CMS lineages. We investigated the phylogenetic relationships between 35 individuals exhibiting different mitochondrial haplotypes. Relying on the high linkage disequilibrium between chloroplastic and mitochondrial genomes, we chose to analyse the nucleotide sequence diversity of three chloroplastic fragments (trnK intron, trnD-trnT and trnL-trnF intergenic spacers). Nucleotide diversity appeared to be low, suggesting a recent bottleneck during the evolutionary history of B. vulgaris ssp. maritima. Statistical parsimony analyses revealed a star-like genealogy and showed that sterilizing haplotypes all belong to different lineages derived from an ancestral non-sterilizing cytoplasm. These results suggest a rapid evolution of male sterility in this taxon. The emergence of gynodioecy in wild beet is confronted with theoretical expectations, describing either gynodioecy dynamics as the maintenance of CMS factors through balancing selection or as a constant turnover of new CMSs.


Assuntos
Beta vulgaris/genética , DNA de Cloroplastos/análise , Beta vulgaris/anatomia & histologia , Beta vulgaris/fisiologia , Cruzamento , DNA Mitocondrial/análise , Evolução Molecular , Fertilidade , Genoma de Planta , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Filogenia , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
16.
Mol Ecol ; 14(3): 805-12, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723671

RESUMO

Sperm competition has been studied in many gonochoric animals but little is known about its occurrence in simultaneous hermaphrodites, especially in land snails. The reproductive behaviour of the land snail Helix aspersa involves several features, like multiple mating, long-term sperm storage and dart-shooting behaviour, which may promote sperm competition. Cryptic female choice may also occur through a spermatheca subdivided into tubules, which potentially allows compartmentalized sperm storage of successive mates. In order to determine the outcome of postcopulatory sexual selection in this species, we designed a cross-breeding experiment where a recipient ('female') mated with two sperm donors ('males'). Mates came from either the same population as the recipient or from a distinct one. To test for the influence a recipient can have on the paternity of its offspring, we excluded the effects of dart shooting by using only virgin snails as sperm donors because they do not shoot any dart before their first copulation. We measured the effects of size of mates as well as time to first and second mating on second mate sperm precedence (P2; established using microsatellite markers). Multiple paternity was detected in 62.5% of clutches and overall there was first-mate sperm precedence with a mean P2 of 0.24. Generalized linear modelling revealed that the best predictors of paternity were the time between matings and the time before first mating. Overall, both first and second mates that copulated quickly got greater parentage, which may suggest that postcopulatory events influence patterns of sperm precedence in the garden snail.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Caracois Helix/fisiologia , Seleção Genética , Comportamento Sexual Animal/fisiologia , Espermatozoides/fisiologia , Animais , Tamanho Corporal , Cruzamentos Genéticos , Feminino , França , Caracois Helix/genética , Modelos Lineares , Masculino , Repetições de Microssatélites/genética , Reprodução/genética , Reprodução/fisiologia
17.
Mol Ecol ; 13(6): 1357-64, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15140082

RESUMO

Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops-to-crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level.


Assuntos
Beta vulgaris/genética , Variação Genética , Genética Populacional , Hibridização Genética , Pólen/fisiologia , Sementes/fisiologia , Beta vulgaris/fisiologia , Cloroplastos/genética , Produtos Agrícolas/genética , Eletroforese , França , Geografia , Repetições de Microssatélites/genética , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...