Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Rev Sci Instrum ; 83(12): 123103, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23277968

RESUMO

We have developed a cryogenic measurement system for single-photon counting, which can be used in optical experiments requiring high time resolution in the picosecond range. The system utilizes niobium nitride superconducting nanowire single-photon detectors which are integrated in a time-correlated single-photon counting (TCSPC) setup. In this work, we describe details of the mechanical design, the electrical setup, and the cryogenic optical components. The performance of the complete system in TCSPC mode is tentatively benchmarked using 140 fs long laser pulses at a repetition frequency of 75 MHz. Due to the high temporal stability of these pulses, the measured time resolution of 35 ps (FWHM) is limited by the timing jitter of the measurement system. The result was cross-checked in a Coherent Anti-stokes Raman Scattering (CARS) setup, where scattered pulses from a ß-barium borate crystal have been detected with the same time resolution.

3.
J Am Chem Soc ; 133(19): 7428-49, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21520890

RESUMO

The ruthenium-catalyzed hydroamidation of terminal alkynes has evolved to become a broadly applicable tool for the synthesis of enamides and enimides. Depending on the catalyst system employed, the reaction leads chemo-, regio-, and stereoselectively to a single diastereoisomer. Herein, we present a comprehensive mechanistic study of the ruthenium-catalyzed hydroamidation of terminal alkynes, which includes deuterium-labeling, in situ IR, in situ NMR, and in situ ESI-MS experiments complemented by computational studies. The results support the involvement of ruthenium-hydride and ruthenium-vinylidene species as the key intermediates. They are best explained by a reaction pathway that consists of an oxidative addition of the amide, followed by insertion of a π-coordinated alkyne into a ruthenium-hydride bond, rearrangement to a vinylidene species, nucleophilic attack of the amide, and finally reductive elimination of the product.


Assuntos
Alcinos/química , Amidas/química , Rutênio/química , Catálise , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...