Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Langmuir ; 39(15): 5342-5351, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37011284

RESUMO

Photoswitches have long been employed in coatings for surfaces and substrates to harness light as a versatile stimulus to induce responsive behavior. We previously demonstrated the viability of arylazopyrazole (AAP) as a photoswitch in self-assembled monolayers (SAMs) on silicon and glass surfaces for photoresponsive wetting applications. We now aim to transfer the excellent photophysical properties of AAPs to polymer brush coatings. Compared to SAMs, polymer brushes offer enhanced stability and an increase of the thickness and density of the functional organic layer. In this work, we present thiolactone acrylate copolymer brushes which can be post-modified with AAP amines as well as hydrophobic acrylates, making use of the unique chemistry of the thiolactones. This strategy enables photoresponsive wetting with a tuneable range of contact angle change on glass substrates. We show the successful synthesis of thiolactone hydroxyethyl acrylate copolymer brushes by means of surface-initiated atom-transfer radical polymerization with the option to either prepare homogeneous brushes or to prepare micrometer-sized brush patterns by microcontact printing. The polymer brushes were analyzed by atomic force microscopy, time-of-flight secondary ion spectrometry, and X-ray photoelectron spectroscopy. Photoresponsive behavior imparted to the brushes by means of post-modification with AAP is monitored by UV/vis spectroscopy, and wetting behavior of homogeneous brushes is measured by static and dynamic contact angle measurements. The brushes show an average change in static contact angle of around 13° between E and Z isomer of the AAP photoswitch for at least five cycles, while the range of contact angle change can be fine-tuned between 53.5°/66.5° (E/Z) and 81.5°/94.8° (E/Z) by post-modification with hydrophobic acrylates.

2.
ACS Appl Mater Interfaces ; 15(9): 12363-12371, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848114

RESUMO

The design of responsive coatings has gained increasing attention recently, with light-responsive interfaces receiving particular appreciation, as their surface properties can be modulated with excellent spatiotemporal control. In this article, we present light-responsive conductive coatings acquired through a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between electropolymerized azide-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-N3) and arylazopyrazole (AAP)-bearing alkynes. The UV/vis and X-ray photoelectron spectroscopy (XPS) data indicate a successful post-modification, supporting a covalent attachment of AAP moieties to PEDOT-N3. The thickness and degree of PEDOT-N3 modification are accessible by varying the amount of passed charge during electropolymerization and time of reaction, respectively, providing a degree of synthetic control over the physicochemical material properties. The produced substrates demonstrate a reversible and stable light-driven switching of photochromic properties in both "dry" and swelled states, as well as efficient electrocatalytic Z → E switching. The AAP-modified polymer substrates exhibit a light-controlled wetting behavior, demonstrating a consistently reversible switching of the static water contact angle with a difference up to 10.0° for CF3-AAP@PEDOT-N3. The results highlight the application of conducting PEDOT-N3 for the covalent immobilization of molecular switches while preserving their stimuli-responsive features.

3.
J Org Chem ; 87(16): 10605-10612, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35921095

RESUMO

Azobenzenes are among the best-studied molecular photoswitches and play a key role in the search for red-shifted photoresponsive materials for extended applications. Currently, most approaches deal with aromatic substitution patterns to achieve visible light application, on occasion paired with protonation to yield red-shifted absorption of the azonium species. Appropriate substitution patterns are essential to stabilize the latter approach, as conventional acids are known to induce a fast Z- to E-conversion. Here, we show that steady-state protonation of the azo-bridge instead is possible in simple azobenzenes when the pKa of the acid is low enough, yielding both the Z- and E-azonium as supported by UV-vis- and 1H NMR spectroscopy as well as density functional theory calculations. Moreover, the steady-state protonation of para-methoxyazobenzene, specifically, yields photoisomerizable azonium ions in which the direction of switching is essentially reversed, that is, visible light produces the out-of-equilibrium Z-azonium. Although the current conditions render the visible light photoswitch unsuitable for in vivo and material application, the demonstrated understanding of simple azobenzenes paves the way for a great range of further work on this already widely studied photoswitch.


Assuntos
Compostos Azo , Luz , Processos Fotoquímicos
4.
Langmuir ; 38(2): 735-742, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989243

RESUMO

Surface coatings that respond to external influences and change their physical properties upon application of external stimuli are of great interest, with light being a particularly desirable choice. Photoswitches such as azobenzenes have been employed in a range of photoresponsive coatings. One striking change in physical property of many photoresponsive coatings is their responsive wettability upon illumination. In this work, we present photoswitchable self-assembled monolayers based on arylazopyrazoles (AAPs). In solution, AAPs offer significant improvements in terms of the photostationary state, thermal stability, and fatigue resistance. The AAP photoswitch is coupled to triethoxysilanes for an easy, one-step functionalization of glass and silicon oxide surfaces. We show the synthesis of AAP-based silanes and the successful surface functionalization, and we confirm the excellent photoswitchability of the AAPs in a self-assembled monolayer upon alternating irradiation with UV (365 nm) and green (520 nm) light. The self-assembled monolayers are investigated by UV/vis spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and contact angle goniometry. We furthermore investigate the effect of substitution of the AAPs on the photoresponsive wetting behavior and compare this with density functional theory (DFT) calculations of the dipole moments of the AAPs.

5.
Chem Sci ; 12(34): 11338-11346, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667544

RESUMO

Molecular photoswitches play a vital role in the development of responsive materials. These molecular building blocks are particularly attractive when multiple stimuli can be combined to bring about physical changes, sometimes leading to unexpected properties and functions. The arylazoisoxazole molecular switch was recently shown to be capable of efficient photoreversible solid-to-liquid phase transitions with application in photoswitchable surface adhesion. Here, we show that the arylazoisoxazole forms thermally stable and photoisomerisable protonated Z- and E-isomers in an apolar aprotic solvent when the pK a of the applied acid is sufficiently low. The tuning of isomerisation kinetics from days to seconds by the pK a of the acid not only opens up new reactivity in solution, but also the solid-state photoswitching of azoisoxazoles can be efficiently reversed with selected acid vapours, enabling acid-gated photoswitchable surface adhesion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...