Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem ; 47(10): 1763-8, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11568084

RESUMO

BACKGROUND: In carnitine palmitoyltransferase I (CPT-I) deficiency (MIM 255120), free carnitine can be increased with no pathologic acylcarnitine species detectable. As inclusion of CPT-I deficiency in high-risk and newborn screening could prevent potentially life-threatening complications, we tested whether CPT-I deficiency might be diagnosed by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). METHODS: A 3.2-mm spot of whole blood dried on filter paper was extracted with 150 microL of methanol. After derivatization of carnitine and acylcarnitines to their butyl esters, the samples were analyzed by ESI-MS/MS with 37.5 pmol of L-[(2)H(3)]carnitine and 7.5 pmol of L-[(2)H(3)]palmitoylcarnitine as internal standards. RESULTS: In all dried-blood specimens from each of three patients with CPT-I deficiency, we found an invariably increased ratio of free carnitine to the sum of palmitoylcarnitine and stearoylcarnitine [C0/(C16 + C18)]. The ratio in patients was between 175 and 2000, or 5- to 60-fold higher than the ratio for the 99.9th centile of the normal newborn population in Bavaria (n = 177 842). No overlap with the values of children that were known to be supplemented with carnitine was detected [C0/(C16 + C18), 34 +/- 30; mean +/- SD; n = 27]. CONCLUSIONS: ESI-MS/MS provides a highly specific acylcarnitine profile from dried-blood samples. The ratio of free carnitine to the sum of palmitoylcarnitine and stearoylcarnitine [C0/(C16 + C18)] is highly specific for CPT-I deficiency and may allow presymptomatic diagnosis.


Assuntos
Carnitina O-Palmitoiltransferase/deficiência , Carnitina/análogos & derivados , Carnitina/sangue , Fígado/enzimologia , Triagem Neonatal , Biomarcadores/sangue , Coleta de Amostras Sanguíneas , Humanos , Lactente , Recém-Nascido , Masculino , Papel , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray
2.
Mamm Genome ; 11(7): 547-51, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10886021

RESUMO

BACKGROUND: Gene mutations often result in altered protein expression and, in turn, lead to changes in metabolite levels in one or more distinct biochemical pathways. Traditional analytical methods for metabolite determination are usually time consuming, expensive, and, thus, not suitable for high throughput analysis. However, recent developments in electrospray-tandem-mass-spectrometry allow comprehensive metabolite scanning from very small amounts of blood with high speed, cost effectiveness, and accuracy. METHODS: A blood spot from a filter paper equivalent to 3 microl of blood was punched out and transferred to a 96-well microtiter plate. After addition of a set of 14 stable isotope-labeled internal standards, amino acids and acylcarnitines were extracted with methanol. The dried residue was derivatized with butanolic hydrochloric acid and subjected to MSMS analysis. RESULTS: Acyl-carnitines were all determined by a precursor ion scan of 85 Da. Neutral loss scanning of 102 Da was suitable for the quantitation of threonine, serine, proline, histidine, alanine, aspartic acid, glutamic acid, methionine, tyrosine, phenylalanine, isoleucine/leucine and valine. Glycine was detected by a loss of a 56-Da fragment, whereas a 119-Da loss was suitable for the measurement of citrulline, ornithine, arginine, and lysine. Specific problems encountered: owing to their identical molecular weight, isoleucine and leucine could not be quantitated separately, and, owing to their instability, glutamine and asparagine were found to be decarboxylated to their respective acids. Determination was linear over the concentration range tested (20 to 1000 micromol/L), and intraassay and interassay coefficients of variation were in the range of 10-15%. CONCLUSION: ESI-MSMS proved to be a highly sensitive, linear, and sufficiently precise method for the quantitative determination of amino acids and acylcarnitines in mouse blood, allowing large-scale screening applications when speed and cost effectiveness are mandatory.


Assuntos
Aminoácidos/sangue , Carnitina/análogos & derivados , Camundongos/genética , Animais , Biomarcadores/sangue , Carnitina/sangue , Etilnitrosoureia , Espectrometria de Massas , Mutagênese , Mutagênicos
3.
J Lipid Res ; 40(8): 1539-46, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10428992

RESUMO

Ceramide (CER) is an important signaling molecule involved in a variety of cellular processes, including differentiation, cell growth, and apoptosis. Currently, different techniques are applied for CER quantitation, some of which are relatively insensitive and/or time consuming. Tandem mass spectrometry with its high selectivity and sensitivity is a very useful technique for detection of low abundant metabolites without prior purification or derivatization. In contrast to existing mass spectrometry methods, the developed electrospray tandem mass spectrometry (ESI-MS/MS) technique is capable of quantifying different CER species from crude cellular lipid extracts. The ESI-MS/MS is performed with a continuous flow injection and the use of an autosampler, resulting in a high throughput capability. The collision-induced fragmentation of CER produced, in addition to others, a characteristic fragment of m/z 264, making a precursor ion scan of 264 well suited for CER quantitation. Quantitation is achieved by use of a constant concentration of a non-naturally occurring internal standard C8-CER, together with a calibration curve established by spiking different concentrations of naturally occurring CER. The calibration curves showed linearity over a wide concentration range and sample volumes equivalent to 10 microg of cell protein corresponding to about 20, 000 fibroblasts were sufficient for CER analysis. Moreover this assay showed a detection limit at the subpicomole level. In summary, this methodology enables accurate and rapid analysis of CER from small samples without prior separation steps, thus providing a useful tool for signal transduction research.


Assuntos
Ceramidas/análise , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Sensibilidade e Especificidade , Frações Subcelulares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...